Estimates from above and from below for the Homogenized Coefficients.
This contribution is devoted to modeling damage zones caused by the excavation of tunnels and boreholes (EDZ zones) in connection with the issue of deep storage of spent nuclear fuel in crystalline rocks. In particular, elastic-plastic models with Mohr-Coulomb or Hoek-Brown yield criteria are considered. Selected details of the numerical solution to the corresponding problems are mentioned. Possibilities of elastic and elastic-plastic approaches are illustrated by a numerical example.
The free motion of a thin elastic linear membrane is described, in a simplyfied model, by a second order linear homogeneous hyperbolic system of partial differential equations whose spatial part is the Laplace Beltrami operator acting on a Riemannian 2-dimensional manifold with boundary. We adapt the estimates of the spectrum of the Laplacian obtained in the last years by several authors for compact closed Riemannian manifolds. To make so, we use the standard technique of the doubled manifold to...
We are very interested with asymptotic problems for the system of elasticity involving small parameters in the description of the domain where the solutions is searched. The corresponding asymptotic expansions have different forms in the various between them. More precisely, our work is concerned with a precise description of the deformation and the stress fields at the junction of an elastic three-dimensional body and a cylinder. The corresponding small parameter is the diameter of the cylinder....
This paper is devoted to Eulerian models for incompressible fluid-structure systems. These models are primarily derived for computational purposes as they allow to simulate in a rather straightforward way complex 3D systems. We first analyze the level set model of immersed membranes proposed in [Cottet and Maitre, Math. Models Methods Appl. Sci.16 (2006) 415–438]. We in particular show that this model can be interpreted as a generalization of so-called Korteweg fluids. We then extend this model...
Rate-independent problems are considered, where the stored energy density is a function of the gradient. The stored energy density may not be quasiconvex and is assumed to grow linearly. Moreover, arbitrary behaviour at infinity is allowed. In particular, the stored energy density is not required to coincide at infinity with a positively 1-homogeneous function. The existence of a rate-independent process is shown in the so-called energetic formulation.
An abstract theory of evolutionary variational inequalities and its applications to the traction boundary value problems of elastoplasticity are studied, using the penalty method to prove the existence of a solution.