First boundary value problem of electroelasticity for a transversally isotropic plane with curvilinear cuts.
In this work the problem of identificating flaws or voids in elastic solids is addressed both from a theoretical and an experimental point of view. Following a so called inverse procedure, which is based on appropriately devised experiments and a particular bounding of the strain energy, a gap functional for flaw identification is proposed.
We prove the existence and find necessary and sufficient conditions for the uniqueness of the time-periodic solution to the equations for an arbitrary (sufficiently smooth) periodic right-hand side , where denotes the Laplace operator with respect to , and is the Ishlinskii hysteresis operator. For this equation describes e.g. the vibrations of an elastic membrane in an elastico-plastic medium.
This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic...