The search session has expired. Please query the service again.
An algorithm for approximation of an unsteady fluid-structure interaction problem is
proposed. The fluid is governed by the Navier-Stokes equations with boundary conditions
on pressure, while for the structure a particular plate model is used.
The algorithm is based on the modal decomposition and the Newmark Method for the structure
and on the Arbitrary Lagrangian Eulerian coordinates and the Finite Element Method for
the fluid.
In this paper, the continuity of the stresses at the interface...
We propose a model for a medical device, called a stent, designed for
the treatment of cerebral aneurysms. The stent consists of a grid,
immersed in the blood flow and located at the inlet of the aneurysm.
It aims at promoting a clot within the aneurysm. The blood flow is
modelled by the incompressible Navier-Stokes equations and the stent
by a dissipative surface term. We propose a stabilized finite element
method for this model and we analyse its convergence in the case of
the Stokes...
This paper is interested with the numerical simulation of the fluid-structure interaction problem realized with the aid of the OpenFOAM package. The case of flow past oscillating NACA 0012 profile was chosen. The loose, strong and combined strong coupling algorithms were tested. The results are presented and a significant improvement of the combined coupling algorithm is shown.
We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings 18 (2007) 133–142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe...
We propose here a model and a numerical scheme to compute the motion
of rigid particles interacting through the lubrication force. In the
case of a particle approaching a plane, we propose an algorithm and
prove its convergence towards the solutions to the gluey particle model
described in [B. Maury, ESAIM: Proceedings18 (2007)
133–142]. We propose a multi-particle version of
this gluey model which is based on the projection of the velocities
onto a set of admissible velocities. Then, we describe...
We consider the mathematical modeling and numerical simulation of high throughput sorting of two different types of biological cells (type I and type II) by a biomedical micro-electro-mechanical system (BioMEMS) whose operating behavior relies on surface acoustic wave (SAW) manipulated fluid flow in a microchannel. The BioMEMS consists of a separation channel with three inflow channels for injection of the carrier fluid and the cells, two outflow channels for separation, and an interdigital transducer...
This paper is devoted to the numerical simulation of wave breaking. It presents the results of a numerical workshop that was held during the conference LOMA04. The objective is to compare several mathematical models (compressible or incompressible) and associated numerical methods to compute the flow field during a wave breaking over a reef. The methods will also be compared with experiments.
This paper is devoted to the numerical simulation of wave
breaking. It presents the results of a numerical workshop that was
held during the conference LOMA04. The objective is to compare
several mathematical models (compressible or incompressible) and
associated numerical methods to compute the flow field during a
wave breaking over a reef. The methods will also be compared with
experiments.
The Kiessl model of moisture and heat transfer in generally nonhomogeneous porous materials is analyzed. A weak formulation of the problem of propagation of the state parameters of this model, which are so-called moisture potential and temperature, is derived. An application of the method of discretization in time leads to a system of boundary-value problems for coupled pairs of nonlinear second order ODE’s. Some existence and regularity results for these problems are proved and an efficient numerical...
It is rather classical to model multiperforated plates by approximate impedance boundary
conditions. In this article we would like to compare an instance of such boundary
conditions obtained through a matched asymptotic expansions technique to direct numerical
computations based on a boundary element formulation in the case of linear acoustic.
Currently displaying 81 –
98 of
98