Displaying 1161 – 1180 of 2633

Showing per page

Logarithmic stabilization of the Kirchhoff plate transmission system with locally distributed Kelvin-Voigt damping

Gimyong Hong, Hakho Hong (2022)

Applications of Mathematics

We are concerned with a transmission problem for the Kirchhoff plate equation where one small part of the domain is made of a viscoelastic material with the Kelvin-Voigt constitutive relation. We obtain the logarithmic stabilization result (explicit energy decay rate), as well as the wellposedness, for the transmission system. The method is based on a new Carleman estimate to obtain information on the resolvent for high frequency. The main ingredient of the proof is some careful analysis for the...

Long time behaviour of a Cahn-Hilliard system coupled with viscoelasticity

Irena Pawłow, Wojciech M. Zajączkowski (2010)

Annales Polonici Mathematici

The long-time behaviour of a unique regular solution to the Cahn-Hilliard system coupled with viscoelasticity is studied. The system arises as a model of the phase separation process in a binary deformable alloy. It is proved that for a sufficiently regular initial data the trajectory of the solution converges to the ω-limit set of these data. Moreover, it is shown that every element of the ω-limit set is a solution of the corresponding stationary problem.

Machine Computation Using the Exponentially Convergent Multiscale Spectral Generalized Finite Element Method

Ivo Babuška, Xu Huang, Robert Lipton (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A multiscale spectral generalized finite element method (MS-GFEM) is presented for the solution of large two and three dimensional stress analysis problems inside heterogeneous media. It can be employed to solve problems too large to be solved directly with FE techniques and is designed for implementation on massively parallel machines. The method is multiscale in nature and uses an optimal family of spectrally defined local basis functions over a coarse grid. It is proved that the method has an...

Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations

S. Cacace, A. Chambolle, A. DeSimone, L. Fedeli (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We discuss a numerical formulation for the cell problem related to a homogenization approach for the study of wetting on micro rough surfaces. Regularity properties of the solution are described in details and it is shown that the problem is a convex one. Stability of the solution with respect to small changes of the cell bottom surface allows for an estimate of the numerical error, at least in two dimensions. Several benchmark experiments are presented and the reliability of the numerical solution...

Material constraints in continuum mechanics

Stuart S. Antman (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dimostra che ci sono valide ragioni per considerare la teoria standard dei vincoli interni, nella meccanica dei continui, insufficientemente generale. In particolare, con l’unica eccezione dell’iperelasticità, l’extra-stress dovrebbe dipendere anche dai moltiplicatori di Lagrange, cioè, dallo stress che non effettua lavoro (virtuale).

Currently displaying 1161 – 1180 of 2633