The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
434
A Mimetic Discretization method for the linear elasticity problem
in mixed weakly symmetric form is developed. The scheme is shown to
converge linearly in the mesh size, independently of the
incompressibility parameter λ, provided the discrete scalar
product satisfies two given conditions. Finally, a family of
algebraic scalar products which respect the above conditions is
detailed.
In the context of the linear, dynamic problem for elastic bodies with voids, a minimum principle in terms of mechanical energy is stated. Involving a suitable (Reiss type) function in the minimizing functional, the minimum character achieved in the Laplace-transform domain is preserved when going back to the original time domain. Initial-boundary conditions of quite general type are considered.
A unilateral problem of an elastic plate above a rigid interior obstacle is solved on the basis of a mixed variational inequality formulation. Using the saddle point theory and the Herrmann-Johnson scheme for a simultaneous computation of deflections and moments, an iterative procedure is proposed, each step of which consists in a linear plate problem. The existence, uniqueness and some convergence analysis is presented.
A modal synthesis method to solve the elastoacoustic vibration problem is analyzed. A two-dimensional coupled fluid-solid system is considered; the solid is described by displacement variables, whereas displacement potential is used for the fluid. A particular modal synthesis leading to a symmetric eigenvalue problem is introduced. Finite element discretizations with lagrangian elements are considered for solving the uncoupled problems. Convergence for eigenvalues and eigenfunctions is proved, error...
A modal synthesis method to solve the elastoacoustic vibration problem
is analyzed. A two-dimensional coupled fluid-solid system is considered;
the solid is described by displacement variables, whereas displacement
potential is used for the fluid. A particular modal synthesis leading to
a symmetric eigenvalue problem is introduced. Finite element discretizations
with Lagrangian elements are considered for solving the uncoupled problems.
Convergence for eigenvalues and eigenfunctions is proved,...
This paper deals with modeling the passive
behavior of skeletal muscle tissue including
certain microvibrations at the cell level. Our
approach combines a continuum mechanics model
with large deformation and incompressibility at
the macroscale with chains of coupled
nonlinear oscillators.
The model verifies that an externally applied
vibration at the appropriate frequency is able to synchronize
microvibrations in skeletal muscle cells.
From the numerical analysis point of view,
one faces...
The influence of a seismic wave on a building is customarily described as a force, a function of the time, whose explicit expression is prescribed. We here suggest a one-dimensional model able to relate this force to the sudden onset of a fault in the rock layer on which the building is built.
We consider a model problem (with constant coefficients and simplified
geometry) for the boundary layer phenomena which appear in thin shell theory
as the relative thickness ε of the shell tends to
zero. For ε = 0 our problem is parabolic, then it is a
model of developpable surfaces. Boundary layers along and across the characteristic
have very different structure. It also appears internal layers associated
with propagations of singularities along the characteristics. The special
structure of...
In this paper, we continue the study of the Raman amplification in plasmas that we initiated in [Colin and Colin, Diff. Int. Eqs. 17 (2004) 297–330; Colin and Colin, J. Comput. Appl. Math. 193 (2006) 535–562]. We point out that the Raman instability gives rise to three components. The first one is collinear to the incident laser pulse and counter propagates. In 2-D, the two other ones make a non-zero angle with the initial pulse and propagate forward. Furthermore they are symmetric with respect...
In this paper, we continue the study of the Raman amplification in plasmas that we initiated in [Colin and Colin, Diff. Int. Eqs.17 (2004) 297–330; Colin and Colin, J. Comput. Appl. Math.193 (2006) 535–562]. We point out that the Raman instability gives rise to three components. The first one is collinear to the incident laser pulse and counter propagates. In 2-D, the two other ones make a non-zero angle with the initial pulse and propagate forward. Furthermore they are symmetric with respect to...
Currently displaying 101 –
120 of
434