Displaying 81 – 100 of 298

Showing per page

Degenerating Cahn-Hilliard systems coupled with mechanical effects and complete damage processes

Christian Heinemann, Christiane Kraus (2014)

Mathematica Bohemica

This paper addresses analytical investigations of degenerating PDE systems for phase separation and damage processes considered on nonsmooth time-dependent domains with mixed boundary conditions for the displacement field. The evolution of the system is described by a degenerating Cahn-Hilliard equation for the concentration, a doubly nonlinear differential inclusion for the damage variable and a quasi-static balance equation for the displacement field. The analysis is performed on a time-dependent...

Design-dependent loads in topology optimization

Blaise Bourdin, Antonin Chambolle (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S of a reference domain, and the complement of S is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure S , which is the total work of the pressure and...

Design-dependent loads in topology optimization

Blaise Bourdin, Antonin Chambolle (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S of a reference domain, and the complement of S is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure S, which is the total work of the pressure...

Dissipatività e unicità per il problema dinamico unidimensionale della viscoelasticità lineare

Giorgio Vergara Caffarelli (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Fissato lo spazio di Sobolev H 1 , 2 come ambiente del problema dinamico per un corpo viscoelastico unidimensionale si dimostra un teorema di unicità per la classe delle funzioni di rilassamento convesse. Si fa inoltre vedere come tale unicità sia strettamente legata allo spazio ambiente considerato.

Energy methods for curved composite beams with partial shear interaction

István Ecsedi, Ákos József Lengyel (2015)

Curved and Layered Structures

This paper presents a derivation of the Rayleigh- Betti reciprocity relation for layered curved composite beams with interlayer slip. The principle of minimum of potential energy is also formulated for two-layer curved composite beams and its applications are illustrated by numerical examples. The solution of the presented problems are obtained by the Ritz method. The applications of the Rayleigh-Betti reciprocity relation proven are illustrated by some examples.

Epitaxially strained elastic films: the case of anisotropic surface energies

Marco Bonacini (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In the context of a variational model for the epitaxial growth of strained elastic films, we study the effects of the presence of anisotropic surface energies in the determination of equilibrium configurations. We show that the threshold effect that describes the stability of flat morphologies in the isotropic case remains valid for weak anisotropies, but is no longer present in the case of highly anisotropic surface energies, where we show that the flat configuration is always a local minimizer...

Equi-integrability results for 3D-2D dimension reduction problems

Marian Bocea, Irene Fonseca (2002)

ESAIM: Control, Optimisation and Calculus of Variations

3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients α u ε | 1 ε 3 u ε bounded in L p ( Ω ; 9 ) , 1 < p < + . Here it is shown that, up to a subsequence, u ε may be decomposed as w ε + z ε , where z ε carries all the concentration effects, i.e. α w ε | 1 ε 3 w ε p is equi-integrable, and w ε captures the oscillatory behavior, i.e. z ε 0 in measure. In addition, if { u ε } is a recovering sequence then z ε = z ε ( x α ) nearby Ω .

Equi-integrability results for 3D-2D dimension reduction problems

Marian Bocea, Irene Fonseca (2010)

ESAIM: Control, Optimisation and Calculus of Variations

3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients α u ε | 1 ε 3 u ε bounded in L p ( Ω ; 9 ) , 1 < p < + . Here it is shown that, up to a subsequence, u ε may be decomposed as w ε + z ε , where z ε carries all the concentration effects, i.e. α w ε | 1 ε 3 w ε p is equi-integrable, and w ε captures the oscillatory behavior, i.e. z ε 0 in measure. In addition, if { u ε } is a recovering sequence then z ε = z ε ( x α ) nearby Ω .

Equivalent formulations of generalized von Kármán equations for circular viscoelastic plates

Igor Brilla (1990)

Aplikace matematiky

The paper deals with the analysis of generalized von Kármán equations which desribe stability of a thin circular viscoelastic clamped plate of constant thickness under a uniform compressible load which is applied along its edge and depends on a real parameter. The meaning of a solution of the mathematical problem is extended and various equivalent reformulations of the problem are considered. The structural pattern of the generalized von Kármán equations is analyzed from the point of view of nonlinear...

Evolutionary problems in non-reflexive spaces

Martin Kružík, Johannes Zimmer (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Rate-independent problems are considered, where the stored energy density is a function of the gradient. The stored energy density may not be quasiconvex and is assumed to grow linearly. Moreover, arbitrary behaviour at infinity is allowed. In particular, the stored energy density is not required to coincide at infinity with a positively 1-homogeneous function. The existence of a rate-independent process is shown in the so-called energetic formulation.

Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems

Shao-Yuan Huang, Ping-Han Hsieh (2023)

Czechoslovak Mathematical Journal

We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems - [ φ ( u ' ) ] ' = λ u p 1 - u N in ( - L , L ) , u ( - L ) = u ( L ) = 0 , where p > 1 , N > 0 , λ > 0 is a bifurcation parameter, L > 0 is an evolution parameter, and φ ( u ) is either φ ( u ) = u or φ ( u ) = u / 1 - u 2 . We prove that the corresponding bifurcation curve is -shape. Thus, the exact multiplicity of positive solutions can be obtained.

Currently displaying 81 – 100 of 298