Displaying 501 – 520 of 684

Showing per page

Spatial heterogeneity in 3D-2D dimensional reduction

Jean-François Babadjian, Gilles A. Francfort (2005)

ESAIM: Control, Optimisation and Calculus of Variations

A justification of heterogeneous membrane models as zero-thickness limits of a cylindral three-dimensional heterogeneous nonlinear hyperelastic body is proposed in the spirit of Le Dret (1995). Specific characterizations of the 2D elastic energy are produced. As a generalization of Bouchitté et al. (2002), the case where external loads induce a density of bending moment that produces a Cosserat vector field is also investigated. Throughout, the 3D-2D dimensional reduction is viewed as a problem...

Spatial heterogeneity in 3D-2D dimensional reduction

Jean-François Babadjian, Gilles A. Francfort (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A justification of heterogeneous membrane models as zero-thickness limits of a cylindral three-dimensional heterogeneous nonlinear hyperelastic body is proposed in the spirit of Le Dret (1995). Specific characterizations of the 2D elastic energy are produced. As a generalization of Bouchitté et al. (2002), the case where external loads induce a density of bending moment that produces a Cosserat vector field is also investigated. Throughout, the 3D-2D dimensional reduction is viewed as a problem...

Stabilisation d’une poutre. Étude du taux optimal de décroissance de l’énergie élastique

Francis Conrad, Fatima-Zahra Saouri (2002)

ESAIM: Control, Optimisation and Calculus of Variations

On se propose d’étudier la stabilité d’une poutre flexible homogène, encastrée à une extrémité. À l’autre extrémité est attachée une masse ponctuelle où on applique un moment proportionnel à la vitesse de déplacement angulaire. On montre par une analyse spectrale que le taux optimal de décroissance de l’énergie est déterminé par l’abscisse spectrale du générateur infinitésimal du semi-groupe associé au problème.

Stabilisation d'une poutre. Étude du taux optimal de décroissance de l'énergie élastique

Francis Conrad, Fatima-Zahra Saouri (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the stability of a flexible beam clamped at one end. A mass is attached at the other end, where a control moment is applied. The boundary control is proportional to the angular velocity at the end. By spectral analysis, we prove that the optimal decay rate of the energy is given by the spectrum of the generator of the semigroup associated to the system.

Stabilisation exponentielle d’une équation des poutres d’Euler-Bernoulli à coefficients variables

My Driss Aouragh, Naji Yebari (2009)

Annales mathématiques Blaise Pascal

Dans ce travail, nous étudions la propriété de base de Riesz et la stabilisation exponentielle pour une équation des poutres d’Euler-Bernoulli à coefficients variables sous un contrôle frontière linéaire dépendant de la position (resp. l’angle de rotation), de la vitesse et de la vitesse de rotation dans le contrôle force (resp. moment). Nous montrons qu’il existe une suite de fonctions propres généralisées qui forme une base de Riesz de l’espace d’énergie considéré, et qu’il y a stabilité exponentielle...

Stabilisation uniforme d’une équation des poutres d’Euler-Bernoulli

Naji Yebari, Abderahmane Elkhattat (2003)

Annales mathématiques Blaise Pascal

Dans ce travail, nous étudions une équation des poutres d’Euler-Bernoulli, on contrôle par combinaison linéaire de vitesse et vitesse de rotation appliquées à l’une des extrémités du système. Tout d’abord nous montrons que le problème est bien posé et qu’il y a stabilité uniforme sous certaines conditions portant sur les coefficients de feedback. Puis nous estimons le taux optimal de décroissance de l’énergie du système par la méthode de Shkalikov.

Stability properties of a class of viscoelastic beams of the hereditary type

Francesco Russo Spena (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The paper deals with the problem of equilibrium stability of prismatic, homogeneous, intrinsically isotropic, viscoelastic beams subjected to the action of constant compressive axial force in the light of Lyapounov's stability theory. For a class of functional expressions of creeping kernels characteristic of no-aging viscoelastic materials of the hereditary type, solution of the governing integro-differential equations is given. Referring to polymeric materials of the PMMA type, numerical results...

Stabilization of a coupled multidimensional system.

Serge Nicaise, Abdoulaye Sène (2006)

Revista Matemática Complutense

We introduce a model of a vibrating multidimensional structure made of a n-dimensional body and a one-dimensional rod. We actually consider the anisotropic elastodynamic system in the n-dimensional body and the Euler-Bernouilli beam in the one-dimensional rod. These equations are coupled via their boundaries. Using appropriate feedbacks on a part of the boundary we show the exponential decay of the energy of the system.

Stabilization of Berger–Timoshenko’s equation as limit of the uniform stabilization of the von Kármán system of beams and plates

G. Perla Menzala, Ademir F. Pazoto, Enrique Zuazua (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a dynamical one-dimensional nonlinear von Kármán model for beams depending on a parameter ε > 0 and study its asymptotic behavior for t large, as ε 0 . Introducing appropriate damping mechanisms we show that the energy of solutions of the corresponding damped models decay exponentially uniformly with respect to the parameter ε . In order for this to be true the damping mechanism has to have the appropriate scale with respect to ε . In the limit as ε 0 we obtain damped Berger–Timoshenko beam models...

Stabilization of Berger–Timoshenko's equation as limit of the uniform stabilization of the von Kármán system of beams and plates

G. Perla Menzala, Ademir F. Pazoto, Enrique Zuazua (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a dynamical one-dimensional nonlinear von Kármán model for beams depending on a parameter ε > 0 and study its asymptotic behavior for t large, as ε → 0. Introducing appropriate damping mechanisms we show that the energy of solutions of the corresponding damped models decay exponentially uniformly with respect to the parameter ε. In order for this to be true the damping mechanism has to have the appropriate scale with respect to ε. In the limit as ε → 0 we obtain damped Berger–Timoshenko...

Stabilization of Timoshenko beam by means of pointwise controls

Gen-Qi Xu, Siu Pang Yung (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the above-mentioned...

Stabilization of Timoshenko Beam by Means of Pointwise Controls

Gen-Qi Xu, Siu Pang Yung (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the...

Currently displaying 501 – 520 of 684