Displaying 41 – 60 of 67

Showing per page

Minimization of a convex quadratic function subject to separable conical constraints in granular dynamics

Pospíšil, Lukáš, Dostál, Zdeněk (2015)

Programs and Algorithms of Numerical Mathematics

The numerical solution of granular dynamics problems with Coulomb friction leads to the problem of minimizing a convex quadratic function with semidefinite Hessian subject to a separable conical constraints. In this paper, we are interested in the numerical solution of this problem. We suggest a modification of an active-set optimal quadratic programming algorithm. The number of projection steps is decreased by using a projected Barzilai-Borwein method. In the numerical experiment, we compare our...

Mixed finite element analysis of semi-coercive unilateral contact problems with given friction

Ivan Hlaváček (2007)

Applications of Mathematics

A unilateral contact 2D-problem is considered provided one of two elastic bodies can shift in a given direction as a rigid body. Using Lagrange multipliers for both normal and tangential constraints on the contact interface, we introduce a saddle point problem and prove its unique solvability. We discretize the problem by a standard finite element method and prove a convergence of approximations. We propose a numerical realization on the basis of an auxiliary “bolted” problem and the algorithm of...

Mixed finite element approximation of 3D contact problems with given friction : error analysis and numerical realization

Jaroslav Haslinger, Taoufik Sassi (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This contribution deals with a mixed variational formulation of 3D contact problems with the simplest model involving friction. This formulation is based on a dualization of the set of admissible displacements and the regularization of the non-differentiable term. Displacements are approximated by piecewise linear elements while the respective dual variables by piecewise constant functions on a dual partition of the contact zone. The rate of convergence is established provided that the solution...

Mixed finite element approximation of 3D contact problems with given friction: Error analysis and numerical realization

Jaroslav Haslinger, Taoufik Sassi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This contribution deals with a mixed variational formulation of 3D contact problems with the simplest model involving friction. This formulation is based on a dualization of the set of admissible displacements and the regularization of the non-differentiable term. Displacements are approximated by piecewise linear elements while the respective dual variables by piecewise constant functions on a dual partition of the contact zone. The rate of convergence is established provided that the solution...

Mixed formulations for a class of variational inequalities

Leila Slimane, Abderrahmane Bendali, Patrick Laborde (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A general setting is proposed for the mixed finite element approximations of elliptic differential problems involving a unilateral boundary condition. The treatment covers the Signorini problem as well as the unilateral contact problem with or without friction. Existence, uniqueness for both the continuous and the discrete problem as well as error estimates are established in a general framework. As an application, the approximation of the Signorini problem by the lowest order mixed finite element...

Mixed formulations for a class of variational inequalities

Leila Slimane, Abderrahmane Bendali, Patrick Laborde (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A general setting is proposed for the mixed finite element approximations of elliptic differential problems involving a unilateral boundary condition. The treatment covers the Signorini problem as well as the unilateral contact problem with or without friction. Existence, uniqueness for both the continuous and the discrete problem as well as error estimates are established in a general framework. As an application, the approximation of the Signorini problem by the lowest order mixed finite element...

On an elasto-dynamic evolution equation with non dead load and friction

Oanh Chau (2006)

Applications of Mathematics

In this paper, we are interested in the dynamic evolution of an elastic body, acted by resistance forces depending also on the displacements. We put the mechanical problem into an abstract functional framework, involving a second order nonlinear evolution equation with initial conditions. After specifying convenient hypotheses on the data, we prove an existence and uniqueness result. The proof is based on Faedo-Galerkin method.

On finite element uniqueness studies for Coulombs frictional contact model

Patrick Hild (2002)

International Journal of Applied Mathematics and Computer Science

We are interested in the finite element approximation of Coulomb's frictional unilateral contact problem in linear elasticity. Using a mixed finite element method and an appropriate regularization, it becomes possible to prove existence and uniqueness when the friction coefficient is less than Cε^{2}|log(h)|^{-1}, where h and ε denote the discretization and regularization parameters, respectively. This bound converging very slowly towards 0 when h decreases (in comparison with the already known...

On harmonic disturbance rejection of an undamped Euler-Bernoulli beam with rigid tip body

Bao-Zhu Guo, Qiong Zhang (2004)

ESAIM: Control, Optimisation and Calculus of Variations

A hybrid flexible beam equation with harmonic disturbance at the end where a rigid tip body is attached is considered. A simple motor torque feedback control is designed for which only the measured time-dependent angle of rotation and its velocity are utilized. It is shown that this control can impel the amplitude of the attached rigid tip body tending to zero as time goes to infinity.

On harmonic disturbance rejection of an undamped Euler-Bernoulli beam with rigid tip body

Bao-Zhu Guo, Qiong Zhang (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A hybrid flexible beam equation with harmonic disturbance at the end where a rigid tip body is attached is considered. A simple motor torque feedback control is designed for which only the measured time-dependent angle of rotation and its velocity are utilized. It is shown that this control can impel the amplitude of the attached rigid tip body tending to zero as time goes to infinity.

On the two-step iterative method of solving frictional contact problems in elasticity

Todor Angelov, Asterios Liolios (2005)

International Journal of Applied Mathematics and Computer Science

A class of contact problems with friction in elastostatics is considered. Under a certain restriction on the friction coefficient, the convergence of the two-step iterative method proposed by P.D. Panagiotopoulos is proved. Its applicability is discussed and compared with two other iterative methods, and the computed results are presented.

Optimal control of a frictionless contact problem with normal compliance

Arezki Touzaline (2018)

Commentationes Mathematicae Universitatis Carolinae

We consider a mathematical model which describes a contact between an elastic body and a foundation. The contact is frictionless with normal compliance. The goal of this paper is to study an optimal control problem which consists of leading the stress tensor as close as possible to a given target, by acting with a control on the boundary of the body. We state an optimal control problem which admits at least one solution. Next, we establish an optimality condition corresponding to a regularization...

Quasistatic frictional problems for elastic and viscoelastic materials

Oanh Chau, Dumitru Motreanu, Mircea Sofonea (2002)

Applications of Mathematics

We consider two quasistatic problems which describe the frictional contact between a deformable body and an obstacle, the so-called foundation. In the first problem the body is assumed to have a viscoelastic behavior, while in the other it is assumed to be elastic. The frictional contact is modeled by a general velocity dependent dissipation functional. We derive weak formulations for the models and prove existence and uniqueness results. The proofs are based on the theory of evolution variational...

Shape optimization for dynamic contact problems

Andrzej Myśliński (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The paper deals with shape optimization of dynamic contact problem with Coulomb friction for viscoelastic bodies. The mass nonpenetrability condition is formulated in velocities. The friction coefficient is assumed to be bounded. Using material derivative method as well as the results concerning the regularity of solution to dynamic variational inequality the directional derivative of the cost functional is calculated and the necessary optimality condition is formulated.

Signorini problem with a solution dependent coefficient of friction (model with given friction): Approximation and numerical realization

Jaroslav Haslinger, Oldřich Vlach (2005)

Applications of Mathematics

Contact problems with given friction and the coefficient of friction depending on their solutions are studied. We prove the existence of at least one solution; uniqueness is obtained under additional assumptions on the coefficient of friction. The method of successive approximations combined with the dual formulation of each iterative step is used for numerical realization. Numerical results of model examples are shown.

Solution of 3D contact shape optimization problems with Coulomb friction based on TFETI

Alexandros Markopoulos, Petr Beremlijski, Oldřich Vlach, Marie Sadowská (2023)

Applications of Mathematics

The present paper deals with the numerical solution of 3D shape optimization problems in frictional contact mechanics. Mathematical modelling of the Coulomb friction problem leads to an implicit variational inequality which can be written as a fixed point problem. Furthermore, it is known that the discretized problem is uniquely solvable for small coefficients of friction. Since the considered problem is nonsmooth, we exploit the generalized Mordukhovich’s differential calculus to compute the needed...

Study of a contact problem with normal compliance and nonlocal friction

Arezki Touzaline (2012)

Applicationes Mathematicae

We consider a static frictional contact between a nonlinear elastic body and a foundation. The contact is modelled by a normal compliance condition such that the penetration is restricted with unilateral constraint and associated to the nonlocal friction law. We derive a variational formulation and prove its unique weak solvability if the friction coefficient is sufficiently small. Moreover, we prove the continuous dependence of the solution on the contact conditions. Also we study the finite element...

Study of a viscoelastic frictional contact problem with adhesion

Arezki Touzaline (2011)

Commentationes Mathematicae Universitatis Carolinae

We consider a quasistatic frictional contact problem between a viscoelastic body with long memory and a deformable foundation. The contact is modelled with normal compliance in such a way that the penetration is limited and restricted to unilateral constraint. The adhesion between contact surfaces is taken into account and the evolution of the bonding field is described by a first order differential equation. We derive a variational formulation and prove the existence and uniqueness result of the...

Currently displaying 41 – 60 of 67