Approximation of a Bending Plate Problem With a Boundary Unilateral Constraint.
We give results for the approximation of a laminate with varying volume fractions for multi-well energy minimization problems modeling martensitic crystals that can undergo either an orthorhombic to monoclinic or a cubic to tetragonal transformation. We construct energy minimizing sequences of deformations which satisfy the corresponding boundary condition, and we establish a series of error bounds in terms of the elastic energy for the approximation of the limiting macroscopic deformation and...
We consider a general loaded arch problem with a small thickness. To approximate the solution of this problem, a conforming mixed finite element method which takes into account an approximation of the middle line of the arch is given. But for a very small thickness such a method gives poor error bounds. the conforming Galerkin method is then enriched with residual-free bubble functions.
We consider a general loaded arch problem with a small thickness. To approximate the solution of this problem, a conforming mixed finite element method which takes into account an approximation of the middle line of the arch is given. But for a very small thickness such a method gives poor error bounds. the conforming Galerkin method is then enriched with residual-free bubble functions.
We analyze an isoparametric finite element method to compute the vibration modes of a plate, modeled by Reissner-Mindlin equations, in contact with a compressible fluid, described in terms of displacement variables. To avoid locking in the plate, we consider a low-order method of the so called MITC (Mixed Interpolation of Tensorial Component) family on quadrilateral meshes. To avoid spurious modes in the fluid, we use a low-order hexahedral Raviart-Thomas elements and a non conforming coupling is...
We analyze an isoparametric finite element method to compute the vibration modes of a plate, modeled by Reissner-Mindlin equations, in contact with a compressible fluid, described in terms of displacement variables. To avoid locking in the plate, we consider a low-order method of the so called MITC (Mixed Interpolation of Tensorial Component) family on quadrilateral meshes. To avoid spurious modes in the fluid, we use a low-order hexahedral Raviart-Thomas elements and a non conforming coupling...
In linear fracture mechanics, it is common to use the local Irwin criterion or the equivalent global Griffith criterion for decision whether the crack is propagating or not. In both cases, a quantity called the stress intensity factor can be used. In this paper, four methods are compared to calculate the stress intensity factor numerically; namely by using the stress values, the shape of a crack, nodal reactions and the global energetic method. The most accurate global energetic method is used to...
The paper deals with the approximation of contact problems of two elastic bodies by finite element method. Using piecewise linear finite elements, some error estimates are derived, assuming that the exact solution is sufficiently smooth. If the solution is not regular, the convergence itself is proven. This analysis is given for two types of contact problems: with a bounded contact zone and with enlarging contact zone.
The problem of a unilateral contact between elastic bodies with an apriori bounded contact zone is formulated in terms of stresses via the principle of complementary energy. Approximations are defined by means of self-equilibriated triangular block-elements and an -error estimate is proven provided the exact solution is regular enough.
If the material of the bodies is elastic perfectly plastic, obeying the Hencky's law, the formulation in terms of stresses is more suitable than that in displacements. The Haar-Kármán principle is first extended to the case of a unilateral contact between two bodies without friction. Approximations are proposed by means of piecewise constant triangular finite elements. Convergence of the method is proved for any regular family of triangulations.
The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.
In addition to the optimal design and worst scenario problems formulated in a previous paper [3], approximate optimization problems are introduced, making use of the finite element method. The solvability of the approximate problems is proved on the basis of a general theorem of [3]. When the mesh size tends to zero, a subsequence of any sequence of approximate solutions converges uniformly to a solution of the continuous problem.