Displaying 81 – 100 of 584

Showing per page

A simple and efficient scheme for phase field crystal simulation

Matt Elsey, Benedikt Wirth (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose an unconditionally stable semi-implicit time discretization of the phase field crystal evolution. It is based on splitting the underlying energy into convex and concave parts and then performing H-1 gradient descent steps implicitly for the former and explicitly for the latter. The splitting is effected in such a way that the resulting equations are linear in each time step and allow an extremely simple implementation and efficient solution. We provide the associated stability and error...

A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies

Saber Amdouni, Patrick Hild, Vanessa Lleras, Maher Moakher, Yves Renard (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The purpose of this paper is to provide a priori error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is...

A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies

Saber Amdouni, Patrick Hild, Vanessa Lleras, Maher Moakher, Yves Renard (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this paper is to provide a priori error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is...

A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies

Saber Amdouni, Patrick Hild, Vanessa Lleras, Maher Moakher, Yves Renard (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this paper is to provide a priori error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is...

A subspace correction method for discontinuous Galerkin discretizations of linear elasticity equations

Blanca Ayuso de Dios, Ivan Georgiev, Johannes Kraus, Ludmil Zikatanov (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed...

A three dimensional finite element method for biological active soft tissue formulation in cylindrical polar coordinates

Christian Bourdarias, Stéphane Gerbi, Jacques Ohayon (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A hyperelastic constitutive law, for use in anatomically accurate finite element models of living structures, is suggested for the passive and the active mechanical properties of incompressible biological tissues. This law considers the passive and active states as a same hyperelastic continuum medium, and uses an activation function in order to describe the whole contraction phase. The variational and the FE formulations are also presented, and the FE code has been validated and applied to describe...

A three dimensional finite element method for biological active soft tissue Formulation in cylindrical polar coordinates

Christian Bourdarias, Stéphane Gerbi, Jacques Ohayon (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A hyperelastic constitutive law, for use in anatomically accurate finite element models of living structures, is suggested for the passive and the active mechanical properties of incompressible biological tissues. This law considers the passive and active states as a same hyperelastic continuum medium, and uses an activation function in order to describe the whole contraction phase. The variational and the FE formulations are also presented, and the FE code has been validated and applied to describe...

A three-field augmented Lagrangian formulation of unilateral contact problems with cohesive forces

David Doyen, Alexandre Ern, Serge Piperno (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We investigate unilateral contact problems with cohesive forces, leading to the constrained minimization of a possibly nonconvex functional. We analyze the mathematical structure of the minimization problem. The problem is reformulated in terms of a three-field augmented Lagrangian, and sufficient conditions for the existence of a local saddle-point are derived. Then, we derive and analyze mixed finite element approximations to the stationarity conditions of the three-field augmented Lagrangian....

A unilateral boundary-value problem for the rod

Miroslav Bosák (1988)

Aplikace matematiky

A unilateral boundary-value condition at the left end of a simply supported rod is considered. Variational and (equivalent) classical formulations are introduced and all solutions to the classical problem are calculated in an explicit form. Formulas for the energies corresponding to the solutions are also given. The problem is solved and energies of the solutions are compared in the pertubed as well as the unperturbed cases.

A variationally consistent generalized variable formulation of the elastoplastic rate problem

Claudia Comi, Umberto Perego (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The elastoplastic rate problem is formulated as an unconstrained saddle point problem which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The finite element discretization and the enforcement of the min-max conditions for the Lagrangean function lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) carry...

Adaptive finite element relaxation schemes for hyperbolic conservation laws

Christos Arvanitis, Theodoros Katsaounis, Charalambos Makridakis (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose and study semidiscrete and fully discrete finite element schemes based on appropriate relaxation models for systems of Hyperbolic Conservation Laws. These schemes are using piecewise polynomials of arbitrary degree and their consistency error is of high order. The methods are combined with an adaptive strategy that yields fine mesh in shock regions and coarser mesh in the smooth parts of the solution. The computational performance of these methods is demonstrated by considering scalar...

Adaptive Finite Element Relaxation Schemes for Hyperbolic Conservation Laws

Christos Arvanitis, Theodoros Katsaounis, Charalambos Makridakis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and study semidiscrete and fully discrete finite element schemes based on appropriate relaxation models for systems of Hyperbolic Conservation Laws. These schemes are using piecewise polynomials of arbitrary degree and their consistency error is of high order. The methods are combined with an adaptive strategy that yields fine mesh in shock regions and coarser mesh in the smooth parts of the solution. The computational performance of these methods is demonstrated by considering scalar...

Adaptive multiscale scheme based on numerical density of entropy production for conservation laws

Mehmet Ersoy, Frédéric Golay, Lyudmyla Yushchenko (2013)

Open Mathematics

We propose a 1D adaptive numerical scheme for hyperbolic conservation laws based on the numerical density of entropy production (the amount of violation of the theoretical entropy inequality). This density is used as an a posteriori error which provides information if the mesh should be refined in the regions where discontinuities occur or coarsened in the regions where the solution remains smooth. As due to the Courant-Friedrich-Levy stability condition the time step is restricted and leads to...

Currently displaying 81 – 100 of 584