The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 201 –
220 of
443
We consider a system of balance laws describing the motion of an ionized compressible fluid interacting with magnetic fields and radiation effects. The local-in-time existence of a unique smooth solution for the Cauchy problem is proven. The proof follows from the method of successive approximations.
Analyzing the validity and success of a data assimilation algorithmwhen some state variable observations are not available is an important problem in meteorology and engineering. We present an improved data assimilation algorithm for recovering the exact full reference solution (i.e. the velocity and temperature) of the 3D Planetary Geostrophic model, at an exponential rate in time, by employing coarse spatial mesh observations of the temperature alone. This provides, in the case of this paradigm,...
The phenomenon of roll waves occurs in a uniform open-channel flow down an incline, when the Froude number is above two. The goal of this paper is to analyze the behavior of numerical approximations to a model roll wave equation which arises as a weakly nonlinear approximation of the shallow water equations. The main difficulty associated with the numerical approximation of this problem is its linear instability. Numerical round-off error can easily overtake the numerical solution and yields false...
The phenomenon of roll waves occurs in a uniform open-channel
flow down an incline, when the Froude number is above two.
The goal of this paper is to analyze the behavior of numerical
approximations to a model roll wave equation ut + uux = u,u(x,0) = u0(x),
which arises as a weakly nonlinear approximation of the shallow water
equations. The main difficulty associated with the numerical approximation of
this problem is its linear instability. Numerical round-off error
can easily overtake the...
We present regularity conditions for a solution to the 3D Navier-Stokes equations, the 3D Euler equations and the 2D quasigeostrophic equations, considering the vorticity directions together with the vorticity magnitude. It is found that the regularity of the vorticity direction fields is most naturally measured in terms of norms of the Triebel-Lizorkin type.
In this paper, we present some interesting connections between a number of Riemann-solver free approaches to the numerical solution of multi-dimensional systems of conservation laws. As a main part, we present a new and elementary derivation of Fey’s Method of Transport (MoT) (respectively the second author’s ICE version of the scheme) and the state decompositions which form the basis of it. The only tools that we use are quadrature rules applied to the moment integral used in the gas kinetic derivation...
In this paper, we present some interesting connections between a
number of Riemann-solver free approaches to the numerical solution
of multi-dimensional systems of conservation laws. As a main part,
we present a new and elementary derivation of Fey's Method of
Transport (MoT) (respectively the second author's ICE version of
the scheme) and the state decompositions which form the basis of it.
The only tools that we use are quadrature rules applied to the
moment integral used in the...
In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation such that the volume of the solution is conserved. We study also the stabilization with a feedback law which...
In this work we are interested in the study of controllability and
stabilization of the linearized Benjamin-Ono equation with
periodic boundary conditions, which is a generic model for the
study of weakly nonlinear waves with nonlocal dispersion. It is
well known that the Benjamin-Ono equation has infinite number of
conserved quantities, thus we consider only controls acting in the
equation such that the volume of the solution is conserved. We
study also the stabilization with a feedback law...
Currently displaying 201 –
220 of
443