Dual combined finite element methods for non-newtonian flow (II). Parameter-dependent problem
This is the second part of the paper for a Non-Newtonian flow. Dual combined Finite Element Methods are used to investigate the little parameter-dependent problem arising in a nonliner three field version of the Stokes system for incompressible fluids, where the viscosity obeys a general law including the Carreau's law and the Power law. Certain parameter-independent error bounds are obtained which solved the problem proposed by Baranger in [4] in a unifying way. We also give some stable finite...
In the paper [13], we give the full system of equations modelling the motion of a fluid/viscoelastic solid system, and obtain a differential model similar to the so-called Oldroyd model for a viscoelastic fluid. Moreover, existence results in bounded domains are obtained. In this paper we extend the results in [13] to unbounded domains. The unique solvability of the system of equations is established locally in time and globally in time with so-called smallness restrictions. Moreover, existence...
We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided . To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces.
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ,d= 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ , d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....
We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes...
We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes...
We study the existence and the uniqueness of a solution to the linear Fokker-Planck equation in a bounded domain of when is a “confinement” vector field. This field acting for instance like the inverse of the distance to the boundary. An illustration of the obtained results is given within the framework of fluid mechanics and polymer flows.