Displaying 41 – 60 of 139

Showing per page

Interior regularity of weak solutions to the equations of a stationary motion of a non-Newtonian fluid with shear-dependent viscosity. The case q = 3 d d + 2

Jörg Wolf (2007)

Commentationes Mathematicae Universitatis Carolinae

In this paper we consider weak solutions 𝐮 : Ω d to the equations of stationary motion of a fluid with shear dependent viscosity in a bounded domain Ω d ( d = 2 or d = 3 ). For the critical case q = 3 d d + 2 we prove the higher integrability of 𝐮 which forms the basis for applying the method of differences in order to get fractional differentiability of 𝐮 . From this we show the existence of second order weak derivatives of u .

Kinetic equations with Maxwell boundary conditions

Stéphane Mischler (2010)

Annales scientifiques de l'École Normale Supérieure

We prove global stability results of DiPerna-Lionsrenormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann,...

Modeling, mathematical and numerical analysis of electrorheological fluids

Michael Růžička (2004)

Applications of Mathematics

Many electrorheological fluids are suspensions consisting of solid particles and a carrier oil. If such a suspension is exposed to a strong electric field the effective viscosity increases dramatically. In this paper we first derive a model which captures this behaviour. For the resulting system of equations we then prove local in time existence of strong solutions for large data. For these solutions we finally derive error estimates for a fully implicit time-discretization.

Modelling and Numerical Simulation of the Dynamics of Glaciers Including Local Damage Effects

G. Jouvet, M. Picasso, J. Rappaz, M. Huss, M. Funk (2011)

Mathematical Modelling of Natural Phenomena

A numerical model to compute the dynamics of glaciers is presented. Ice damage due to cracks or crevasses can be taken into account whenever needed. This model allows simulations of the past and future retreat of glaciers, the calving process or the break-off of hanging glaciers. All these phenomena are strongly affected by climate change.Ice is assumed to behave as an incompressible fluid with nonlinear viscosity, so that the velocity and pressure...

Non-Newtonian fluids and function spaces

Růžička, Michael, Diening, Lars (2007)

Nonlinear Analysis, Function Spaces and Applications

In this note we give an overview of recent results in the theory of electrorheological fluids and the theory of function spaces with variable exponents. Moreover, we present a detailed and self-contained exposition of shifted N -functions that are used in the studies of generalized Newtonian fluids and problems with p -structure.

Currently displaying 41 – 60 of 139