On the existence of weak solutions for the initial-boundary value problem in the Jeffreys model of motion of a viscoelastic medium.
We study the generalized Oldroyd model with viscosity depending on the shear stress behaving like (p > 6/5), regularized by a nonlinear stress diffusion. Using the Lipschitz truncation method we prove global existence of a weak solution to the corresponding system of partial differential equations.
We consider a model for the viscoelastic fluid which has recently been studied in [4] and [1]. We show the local-in-time existence of a strong solution to the corresponding system of partial differential equations under less regularity assumptions on the initial data than in the above mentioned papers. The main difference in our approach is the use of the theory for the Stokes system.
It was conjectured in [1] that there is at most one bounded channel flow for a viscoelastic fluid whose stress relaxation function is positive, integrable, and strictly convex. In this paper we prove the uniqueness of bounded channel flows, assuming to be non-negative, integrable, and convex, but different from a very specific piecewise linear function. Furthermore, whenever these hypotheses apply, the unbounded channel flows, if any, must grow in time faster than any polynomial.
A mathematical model of heat and mass transport in non-isothermal partially saturated oil-wax solution was formulated by A. Fasano and M. Primicerio [1]. This paper is devoted to the study of a one-dimensional problem in the framework of that model. The existence of classical solutions in a small time interval is proved, based on the application of a fixed-point theorem to the constructed operator. The technique employed is close to the one of [3] and [4].