Displaying 101 – 120 of 312

Showing per page

Global existence of strong solutions to the one-dimensional full model for phase transitions in thermoviscoelastic materials

Elisabetta Rocca, Riccarda Rossi (2008)

Applications of Mathematics

This paper is devoted to the analysis of a one-dimensional model for phase transition phenomena in thermoviscoelastic materials. The corresponding parabolic-hyperbolic PDE system features a strongly nonlinear internal energy balance equation, governing the evolution of the absolute temperature ϑ , an evolution equation for the phase change parameter χ , including constraints on the phase variable, and a hyperbolic stress-strain relation for the displacement variable 𝐮 . The main novelty of the model...

Hamiltonian principle in the binary mixtures of Euler fluids with applications to the second sound phenomena

Henri Gouin, Tommaso Ruggeri (2003)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In the present paper we compare the theory of mixtures based on Rational Thermomechanics with the one obtained by Hamilton principle. We prove that the two theories coincide in the adiabatic case when the action is constructed with the intrinsic Lagrangian. In the complete thermodynamical case we show that we have also coincidence in the case of low temperature when the second sound phenomena arises for superfluid Helium and crystals.

Interior regularity of weak solutions to the equations of a stationary motion of a non-Newtonian fluid with shear-dependent viscosity. The case q = 3 d d + 2

Jörg Wolf (2007)

Commentationes Mathematicae Universitatis Carolinae

In this paper we consider weak solutions 𝐮 : Ω d to the equations of stationary motion of a fluid with shear dependent viscosity in a bounded domain Ω d ( d = 2 or d = 3 ). For the critical case q = 3 d d + 2 we prove the higher integrability of 𝐮 which forms the basis for applying the method of differences in order to get fractional differentiability of 𝐮 . From this we show the existence of second order weak derivatives of u .

Kinetic equations with Maxwell boundary conditions

Stéphane Mischler (2010)

Annales scientifiques de l'École Normale Supérieure

We prove global stability results of DiPerna-Lionsrenormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann,...

La scelta delle interazioni inerziali nei continui con microstruttura

Paolo Podio-Guidugli (2003)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Dedicando speciale attenzione all’esempio significativo dei cristalli liquidi di Ericksen [6], viene presentato un apparato assiomatico che consente di dedurre rappresentazioni coerenti delle interazioni d’inerzia e dell’energia cinetica per continui con microstruttura.

Currently displaying 101 – 120 of 312