Berechnung der ebenen Potentialströmung von rotierenden radialen Profilgittern
We study here some asymptotic models for the propagation of internal and surface waves in a two-fluid system. We focus on the so-called long wave regime for one-dimensional waves, and consider the case of a flat bottom. Following the method presented in [J.L. Bona, T. Colin and D. Lannes, Arch. Ration. Mech. Anal. 178 (2005) 373–410] for the one-layer case, we introduce a new family of symmetric hyperbolic models, that are equivalent to the classical Boussinesq/Boussinesq system displayed in [W. Choi...
We study here some asymptotic models for the propagation of internal and surface waves in a two-fluid system. We focus on the so-called long wave regime for one-dimensional waves, and consider the case of a flat bottom. Following the method presented in [J.L. Bona, T. Colin and D. Lannes, Arch. Ration. Mech. Anal.178 (2005) 373–410] for the one-layer case, we introduce a new family of symmetric hyperbolic models, that are equivalent to the classical Boussinesq/Boussinesq system displayed in [W. Choi...
We present one- and two-dimensional central-upwind schemes for approximating solutions of the Saint-Venant system with source terms due to bottom topography. The Saint-Venant system has steady-state solutions in which nonzero flux gradients are exactly balanced by the source terms. It is a challenging problem to preserve this delicate balance with numerical schemes. Small perturbations of these states are also very difficult to compute. Our approach is based on extending semi-discrete central schemes...
We present one- and two-dimensional central-upwind schemes for approximating solutions of the Saint-Venant system with source terms due to bottom topography. The Saint-Venant system has steady-state solutions in which nonzero flux gradients are exactly balanced by the source terms. It is a challenging problem to preserve this delicate balance with numerical schemes. Small perturbations of these states are also very difficult to compute. Our approach is based on extending semi-discrete central...
In this paper we investigate the motion of a rigid ball in an incompressible perfect fluid occupying . We prove the global in time existence and the uniqueness of the classical solution for this fluid-structure problem. The proof relies mainly on weighted estimates for the vorticity associated with the strong solution of a fluid-structure problem obtained by incorporating some dissipation.
In this paper we investigate the motion of a rigid ball in an incompressible perfect fluid occupying . We prove the global in time existence and the uniqueness of the classical solution for this fluid-structure problem. The proof relies mainly on weighted estimates for the vorticity associated with the strong solution of a fluid-structure problem obtained by incorporating some dissipation.
Partant du principe de conservation de la masse et du principe fondamental de la dynamique, on retrouve l'équation d'Euler nous permettant de décrire les modèles asymptotiques de propagation d'ondes dans des eaux peu profondes en dimension 1. Pour décrire la propagation des ondes en dimension 2, Kadomtsev et Petviashvili [ 15 (1970) 539] utilisent une perturbation linéaire de l'équation de KdV. Mais cela ne précise pas si les équations ainsi obtenues dérivent de l'équation d'Euler, c'est ce que...