Stability of solitary wave solutions for equations of short and long dispersive waves.
We consider a tank containing a fluid. The tank is subjected to a one-dimensional horizontal move and the motion of the fluid is described by the shallow water equations. By means of a Lyapunov approach, we deduce control laws to stabilize the fluid's state and the tank's position. Although global asymptotic stability is yet to be proved, we numerically simulate the system and observe the stabilization for different control situations.
In this paper, the axisymmetric flow in an ideal fluid outside the infinite cylinder () where denotes the cylindrical co-ordinates in is considered. The motion is with swirl (i.e. the -component of the velocity of the flow is non constant). The (non-dimensional) equation governing the phenomenon is (Pd) displayed below. It is known from e.g. that for the problem without swirl ( in (f)) in the whole space, as the flux constant tends to , 1) ; ; 2) converges to a vortex cylinder (see...
In this paper we investigate the dispersive properties of the solutions of the two dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss of derivatives at the same low level of regularity we were able to construct the solutions in [3]. On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system linearized at ()).
In according to a recent thermodynamic theory proposed by G. Grioli, we consider the growth of acceleration waves in a non viscous fluid. We determine the solutions for the growth of a plane or spherical wave advancing into the fluid in mechanical but not in thermal equilibrium.
In according to a recent thermodynamic theory proposed by G. Grioli we consider the growth of acceleration waves in a non viscous fluid. We determine the solutions for the growth of a plane or spherical wave advancing into the fluid in mechanical but not in thermal equilibrium.
Il a été établi par H. Lewy (1952) qu’une surface libre hydrodynamique qui est au moins dans un voisinage d’un point à la surface libre, est automatiquement , éventuellement dans un voisinage plus petit de . Ce résultat local est un exemple qui précédait la théorie dévelopée par D. Kinderlehrer, L. Nirenberg et J. Spruck (1977 - 79) démontrant que dans beaucoup de cas, des surfaces libres ne peuvent pas être d’une régularité arbitraire, et en particulier ils existent tels que, si la surface...
Nous considérons dans ce travail l’écoulement d’un fluide dans un canal plat avec un obstacle au fond. Cet obstacle génère une surface libre qui n’est plus horizontale, comme c’est le cas sans obstacle. Nous montrons que, dans le cas sur critique, si l’obstacle n’est pas trop élevé, il y a une solution et une seule. Nous donnons des indications pour le cas sous critique et pour le problème numérique.