Limiting behavior for an iterated viscosity
The behavior of an ordinary differential equation for the low wave number velocity mode is analyzed. This equation was derived in [5] by an iterative process on the two-dimensional Navier-Stokes equations (NSE). It resembles the NSE in form, except that the kinematic viscosity is replaced by an iterated viscosity which is a partial sum, dependent on the low-mode velocity. The convergence of this sum as the number of iterations is taken to be arbitrarily large is explored. This leads to a limiting...
The paper analyzes the issue of existence of solutions to linear problems in two dimensional exterior domains, linearizations of the Navier-Stokes equations. The systems are studied with a slip boundary condition. The main results prove the existence of distributional solutions for arbitrary data.
For robust discretizations of the Navier-Stokes equations with small viscosity, standard Galerkin schemes have to be augmented by stabilization terms due to the indefinite convective terms and due to a possible lost of a discrete inf-sup condition. For optimal control problems for fluids such stabilization have in general an undesired effect in the sense that optimization and discretization do not commute. This is the case for the combination of streamline upwind Petrov-Galerkin (SUPG) and pressure...
We are interested by the three-dimensional coupling between an incompressible fluid and a rigid body. The fluid is modeled by the Navier-Stokes equations, while the solid satisfies the Newton's laws. In the main result of the paper we prove that, with the help of a distributed control, we can drive the fluid and structure velocities to zero and the solid to a reference position provided that the initial velocities are small enough and the initial position of the structure is close to the reference...
In this article we consider local solutions for stochastic Navier Stokes equations, based on the approach of Von Wahl, for the deterministic case. We present several approaches of the concept, depending on the smoothness available. When smoothness is available, we can in someway reduce the stochastic equation to a deterministic one with a random parameter. In the general case, we mimic the concept of local solution for stochastic differential equations.
We examine the Navier-Stokes equations with homogeneous slip boundary conditions coupled with the heat equation with homogeneous Neumann conditions in a bounded domain in ℝ³. The domain is a cylinder along the x₃ axis. The aim of this paper is to show long time estimates without assuming smallness of the initial velocity, the initial temperature and the external force. To prove the estimate we need however smallness of the L₂ norms of the x₃-derivatives of these three quantities.
We prove long time existence of regular solutions to the Navier-Stokes equations coupled with the heat equation. We consider the system in a non-axially symmetric cylinder, with the slip boundary conditions for the Navier-Stokes equations, and the Neumann condition for the heat equation. The long time existence is possible because the derivatives, with respect to the variable along the axis of the cylinder, of the initial velocity, initial temperature and external force are assumed to be sufficiently...
Long time existence of solutions to the Navier-Stokes equations in cylindrical domains under boundary slip conditions is proved. Moreover, the existence of solutions with no restrictions on the magnitude of the initial velocity and the external force is shown. However, we have to assume that the quantity is sufficiently small, where x₃ is the coordinate along the axis parallel to the cylinder. The time of existence is inversely proportional to I. Existence of solutions is proved by the Leray-Schauder...
Global existence of regular solutions to the Navier-Stokes equations for (v,p) coupled with the heat convection equation for θ is proved in the two-dimensional case in a bounded domain. We assume the slip boundary conditions for velocity and the Neumann condition for temperature. First an appropriate estimate is shown and next the existence is proved by the Leray-Schauder fixed point theorem. We prove the existence of solutions such that , , s>2.
We study the long-time behavior of infinite-energy solutions to the incompressible Navier-Stokes equations in a two-dimensional exterior domain, with no-slip boundary conditions. The initial data we consider are finite-energy perturbations of a smooth vortex with small circulation at infinity, but are otherwise arbitrarily large. Using a logarithmic energy estimate and some interpolation arguments, we prove that the solution approaches a self-similar Oseen vortex as . This result was obtained in...
We study a diffuse interface model for the flow of two viscous incompressible Newtonian fluids of the same density in a bounded domain. The fluids are assumed to be macroscopically immiscible, but a partial mixing in a small interfacial region is assumed in the model. Moreover, diffusion of both components is taken into account. This leads to a coupled Navier-Stokes/Cahn-Hilliard system, which can describe the evolution of droplet formation and collision during the flow. We review some results on...