Displaying 61 – 80 of 152

Showing per page

On some free boundary problems for Navier-Stokes equations

Ewa Zadrzyńska (2005)

Banach Center Publications

In this survey we report on existence results for some free boundary problems for equations describing motions of both incompressible and compressible viscous fluids. We also present ways of controlling free boundaries in two cases: a) when the free boundary is governed by surface tension, b) when surface tension does not occur.

On stability of the P n mod / P n element for incompressible flow problems

Petr Knobloch (2006)

Applications of Mathematics

It is well known that finite element spaces used for approximating the velocity and the pressure in an incompressible flow problem have to be stable in the sense of the inf-sup condition of Babuška and Brezzi if a stabilization of the incompressibility constraint is not applied. In this paper we consider a recently introduced class of triangular nonconforming finite elements of n th order accuracy in the energy norm called P n elements. For n 3 we show that the stability condition holds if the velocity...

On suitable inlet boundary conditions for fluid-structure interaction problems in a channel

Jan Valášek, Petr Sváček, Jaromír Horáček (2019)

Applications of Mathematics

We are interested in the numerical solution of a two-dimensional fluid-structure interaction problem. A special attention is paid to the choice of physically relevant inlet boundary conditions for the case of channel closing. Three types of the inlet boundary conditions are considered. Beside the classical Dirichlet and the do-nothing boundary conditions also a generalized boundary condition motivated by the penalization prescription of the Dirichlet boundary condition is applied. The fluid flow...

On the blow up criterion for the 2-D compressible Navier-Stokes equations

Lingyu Jiang, Yidong Wang (2010)

Czechoslovak Mathematical Journal

Motivated by [10], we prove that the upper bound of the density function ρ controls the finite time blow up of the classical solutions to the 2-D compressible isentropic Navier-Stokes equations. This result generalizes the corresponding result in [3] concerning the regularities to the weak solutions of the 2-D compressible Navier-Stokes equations in the periodic domain.

Currently displaying 61 – 80 of 152