Spectral Tau Approximation of the Two-Dimensional Stokes Problem.
This work presents simulations of incompressible fluid flow interacting with a moving rigid body. A numerical algorithm for incompressible Navier-Stokes equations in a general coordinate system is applied to two types of body motion, prescribed and flow-induced. Discretization in spatial coordinates is based on the spectral/hp element method. Specific techniques of stabilisation, mesh design and approximation quality estimates are described and compared. Presented data show performance of the solver...
We consider some abstract nonlinear equations in a separable Hilbert space and some class of approximate equations on closed linear subspaces of . The main result concerns stability with respect to the approximation of the space . We prove that, generically, the set of all solutions of the exact equation is the limit in the sense of the Hausdorff metric over of the sets of approximate solutions, over some filterbase on the family of all closed linear subspaces of . The abstract results are...
We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary....
The paper examines the initial value problem for the Navier-Stokes system of viscous incompressible fluids in the three-dimensional space. We prove stability of regular solutions which tend to constant flows sufficiently fast. We show that a perturbation of a regular solution is bounded in for k ∈ ℕ. The result is obtained under the assumption of smallness of the L₂-norm of the perturbing initial data. We do not assume smallness of the -norm of the perturbing initial data or smallness of the...
We prove the linear and non-linear stability of oscillating Ekman boundary layers for rotating fluids in the so-called ill-prepared case under a spectral hypothesis. Here, we deal with the case where the viscosity and the Rossby number are both equal to . This study generalizes the study of [23] where a smallness condition was imposed and the study of [26] where the well-prepared case was treated.
In this paper, a general technique is developed to enlarge the velocity space of the unstable -element by adding spaces such that for the extended pair the Babuska-Brezzi condition is satisfied. Examples of stable elements which can be derived in such a way imply the stability of the well-known Q2/Q1-element and the 4Q1/Q1-element. However, our new elements are much more cheaper. In particular, we shall see that more than half of the additional degrees of freedom when switching from the Q1...
In this paper, we analyze a class of stabilized finite element formulations used in computation of (i) second order elliptic boundary value problems (diffusion-convection-reaction model) and (ii) the Navier-Stokes problem (incompressible flow model). These stabilization techniques prevent numerical instabilities that might be generated by dominant convection/reaction terms in (i), (ii) or by inappropriate combinations of velocity/pressure interpolation functions in (ii). Stability and convergence...
The isothermal Navier–Stokes–Korteweg system is used to model dynamics of a compressible fluid exhibiting phase transitions between a liquid and a vapor phase in the presence of capillarity effects close to phase boundaries. Standard numerical discretizations are known to violate discrete versions of inherent energy inequalities, thus leading to spurious dynamics of computed solutions close to static equilibria (e.g., parasitic currents). In this work, we propose a time-implicit discretization of...
In this paper we are concerned with the steady Boussinesq system with mixed boundary conditions. The boundary conditions for fluid may include Tresca slip, leak, one-sided leak, velocity, vorticity, pressure and stress conditions together and the conditions for temperature may include Dirichlet, Neumann and Robin conditions together. For the problem involving the static pressure and stress boundary conditions, it is proved that if the data of the problem are small enough, then there exists a solution...
We consider the steady plane flow of certain classes of viscoelastic fluids in exterior domains with a non-zero velocity prescribed at infinity. We study existence as well as asymptotic behaviour of solutions near infinity and show that for sufficiently small data the solution decays near infinity as fast as the fundamental solution to the Oseen problem.