Displaying 81 – 100 of 125

Showing per page

Reduced resistive MHD in Tokamaks with general density

Bruno Després, Rémy Sart (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this paper is to derive a general model for reduced viscous and resistive Magnetohydrodynamics (MHD) and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The existence of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.

Reduced resistive MHD in Tokamaks with general density

Bruno Després, Rémy Sart (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to derive a general model for reduced viscous and resistive Magnetohydrodynamics (MHD) and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The existence of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.

Régularité du problème de Kelvin–Helmholtz pour l’équation d’Euler 2D

Gilles Lebeau (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Nous prouvons que pour toute solution u du problème de Kelvin–Helmholtz des nappes de tourbillons pour l’équation d’Euler bi-dimensionnelle, définie localement en temps, la courbe de saut de u et la densité de tourbillon sont analytiques (sous une hypothèse de régularité Holderienne de la courbe de saut). Nous donnons également un résultat de régularité partielle de la trace de u sur t = 0 lorsque u est définie sur un demi-interval [ O , T [ .

Régularité du problème de Kelvin–Helmholtz pour l'équation d'Euler 2d

Gilles Lebeau (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Nous prouvons que pour toute solution u du problème de Kelvin–Helmholtz des nappes de tourbillons pour l'équation d'Euler bi-dimensionnelle, définie localement en temps, la courbe de saut de u et la densité de tourbillon sont analytiques (sous une hypothèse de régularité Holderienne de la courbe de saut). Nous donnons également un résultat de régularité partielle de la trace de u sur t=0 lorsque u est définie sur un demi-interval [O,T[.

Stability and instability in nineteenth-century fluid mechanics

Olivier Darrigol (2002)

Revue d'histoire des mathématiques

The stability or instability of a few basic flows was conjectured, debated, and sometimes proved in the nineteenth century. Motivations varied from turbulence observed in real flows to permanence expected in hydrodynamic theories of matter. Contemporary mathematics often failed to provide rigorous answers, and personal intuitions sometimes gave wrong results. Yet some of the basic ideas and methods of the modern theory of hydrodynamic instability occurred to the elite of British and German mathematical...

Stability of oscillating boundary layers in rotating fluids

Nader Masmoudi, Frédéric Rousset (2008)

Annales scientifiques de l'École Normale Supérieure

We prove the linear and non-linear stability of oscillating Ekman boundary layers for rotating fluids in the so-called ill-prepared case under a spectral hypothesis. Here, we deal with the case where the viscosity and the Rossby number are both equal to ε . This study generalizes the study of [23] where a smallness condition was imposed and the study of [26] where the well-prepared case was treated.

Stationary states and moving planes

Gerhard Ströhmer (2008)

Banach Center Publications

Most of the paper deals with the application of the moving plane method to different questions concerning stationary accumulations of isentropic gases. The first part compares the concepts of stationarity arising from the points of view of dynamics and the calculus of variations. Then certain stationary solutions are shown to be unstable. Finally, using the moving plane method, a short proof of the existence of energy-minimizing gas balls is given.

Steady tearing mode instabilities with a resistivity depending on a flux function

Atanda Boussari, Erich Maschke, Bernard Saramito (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider plasma tearing mode instabilities when the resistivity depends on a flux function (ψ), for the plane slab model. This problem, represented by the MHD equations, is studied as a bifurcation problem. For so doing, it is written in the form (I(.)-T(S,.)) = 0, where T(S,.) is a compact operator in a suitable space and S is the bifurcation parameter. In this work, the resistivity is not assumed to be a given quantity (as usually done in previous papers, see [1,2,5,7,8,9,10], but it depends...

Currently displaying 81 – 100 of 125