Oscillations non linéaires des systèmes hyperboliques : méthodes et résultats qualitatifs
The aim of this paper is to derive a general model for reduced viscous and resistive Magnetohydrodynamics (MHD) and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The existence of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.
The aim of this paper is to derive a general model for reduced viscous and resistive Magnetohydrodynamics (MHD) and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The existence of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.
Nous prouvons que pour toute solution du problème de Kelvin–Helmholtz des nappes de tourbillons pour l’équation d’Euler bi-dimensionnelle, définie localement en temps, la courbe de saut de et la densité de tourbillon sont analytiques (sous une hypothèse de régularité Holderienne de la courbe de saut). Nous donnons également un résultat de régularité partielle de la trace de sur lorsque est définie sur un demi-interval .
Nous prouvons que pour toute solution u du problème de Kelvin–Helmholtz des nappes de tourbillons pour l'équation d'Euler bi-dimensionnelle, définie localement en temps, la courbe de saut de u et la densité de tourbillon sont analytiques (sous une hypothèse de régularité Holderienne de la courbe de saut). Nous donnons également un résultat de régularité partielle de la trace de u sur t=0 lorsque u est définie sur un demi-interval [O,T[.
The stability or instability of a few basic flows was conjectured, debated, and sometimes proved in the nineteenth century. Motivations varied from turbulence observed in real flows to permanence expected in hydrodynamic theories of matter. Contemporary mathematics often failed to provide rigorous answers, and personal intuitions sometimes gave wrong results. Yet some of the basic ideas and methods of the modern theory of hydrodynamic instability occurred to the elite of British and German mathematical...
We prove the linear and non-linear stability of oscillating Ekman boundary layers for rotating fluids in the so-called ill-prepared case under a spectral hypothesis. Here, we deal with the case where the viscosity and the Rossby number are both equal to . This study generalizes the study of [23] where a smallness condition was imposed and the study of [26] where the well-prepared case was treated.
Most of the paper deals with the application of the moving plane method to different questions concerning stationary accumulations of isentropic gases. The first part compares the concepts of stationarity arising from the points of view of dynamics and the calculus of variations. Then certain stationary solutions are shown to be unstable. Finally, using the moving plane method, a short proof of the existence of energy-minimizing gas balls is given.
We consider plasma tearing mode instabilities when the resistivity depends on a flux function (ψ), for the plane slab model. This problem, represented by the MHD equations, is studied as a bifurcation problem. For so doing, it is written in the form (I(.)-T(S,.)) = 0, where T(S,.) is a compact operator in a suitable space and S is the bifurcation parameter. In this work, the resistivity is not assumed to be a given quantity (as usually done in previous papers, see [1,2,5,7,8,9,10], but it depends...