Displaying 601 – 620 of 797

Showing per page

Reduced basis method for finite volume approximations of parametrized linear evolution equations

Bernard Haasdonk, Mario Ohlberger (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The model order reduction methodology of reduced basis (RB) techniques offers efficient treatment of parametrized partial differential equations (P2DEs) by providing both approximate solution procedures and efficient error estimates. RB-methods have so far mainly been applied to finite element schemes for elliptic and parabolic problems. In the current study we extend the methodology to general linear evolution schemes such as finite volume schemes for parabolic and hyperbolic evolution equations....

Relaxation and numerical approximation of a two-fluid two-pressure diphasic model

Annalisa Ambroso, Christophe Chalons, Frédéric Coquel, Thomas Galié (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the numerical approximation of the solutions of a two-fluid two-pressure model used in the modelling of two-phase flows. We present a relaxation strategy for easily dealing with both the nonlinearities associated with the pressure laws and the nonconservative terms that are inherently present in the set of convective equations and that couple the two phases. In particular, the proposed approximate Riemann solver is given by explicit formulas, preserves the natural...

Relaxation models of phase transition flows

Philippe Helluy, Nicolas Seguin (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we propose a general framework for the construction of pressure law for phase transition. These equations of state are particularly suitable for a use in a relaxation finite volume scheme. The approach is based on a constrained convex optimization problem on the mixture entropy. It is valid for both miscible and immiscible mixtures. We also propose a rough pressure law for modelling a super-critical fluid.

Relaxation schemes for the multicomponent Euler system

Stéphane Dellacherie (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We show that it is possible to construct a class of entropic schemes for the multicomponent Euler system describing a gas or fluid homogeneous mixture at thermodynamic equilibrium by applying a relaxation technique. A first order Chapman–Enskog expansion shows that the relaxed system formally converges when the relaxation frequencies go to the infinity toward a multicomponent Navier–Stokes system with the classical Fick and Newton laws, with a thermal diffusion which can be assimilated to a Soret...

Relaxation schemes for the multicomponent Euler system

Stéphane Dellacherie (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We show that it is possible to construct a class of entropic schemes for the multicomponent Euler system describing a gas or fluid homogeneous mixture at thermodynamic equilibrium by applying a relaxation technique. A first order Chapman–Enskog expansion shows that the relaxed system formally converges when the relaxation frequencies go to the infinity toward a multicomponent Navier–Stokes system with the classical Fick and Newton laws, with a thermal diffusion which can be assimilated to a Soret...

Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods

Linda El Alaoui, Alexandre Ern (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze residual and hierarchical a posteriori error estimates for nonconforming finite element approximations of elliptic problems with variable coefficients. We consider a finite volume box scheme equivalent to a nonconforming mixed finite element method in a Petrov–Galerkin setting. We prove that all the estimators yield global upper and local lower bounds for the discretization error. Finally, we present results illustrating the efficiency of the estimators, for instance, in the simulation...

Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods

Linda El Alaoui, Alexandre Ern (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze residual and hierarchical a posteriori error estimates for nonconforming finite element approximations of elliptic problems with variable coefficients. We consider a finite volume box scheme equivalent to a nonconforming mixed finite element method in a Petrov–Galerkin setting. We prove that all the estimators yield global upper and local lower bounds for the discretization error. Finally, we present results illustrating the efficiency of the estimators, for instance, in the simulation...

Richardson extrapolation and defect correction of mixed finite element methods for integro-differential equations in porous media

Shanghui Jia, Deli Li, Tang Liu, Shu Hua Zhang (2008)

Applications of Mathematics

Asymptotic error expansions in the sense of L -norm for the Raviart-Thomas mixed finite element approximation by the lowest-order rectangular element associated with a class of parabolic integro-differential equations on a rectangular domain are derived, such that the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied to increase the accuracy of the approximations for both the vector field and the scalar field by the aid of an interpolation postprocessing...

Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport*

Carlo D'Angelo, Paolo Zunino (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

The fully coupled description of blood flow and mass transport in blood vessels requires extremely robust numerical methods. In order to handle the heterogeneous coupling between blood flow and plasma filtration, addressed by means of Navier-Stokes and Darcy's equations, we need to develop a numerical scheme capable to deal with extremely variable parameters, such as the blood viscosity and Darcy's permeability of the arterial walls. In this paper, we describe a finite element method for...

Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport*

Carlo D'Angelo, Paolo Zunino (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

The fully coupled description of blood flow and mass transport in blood vessels requires extremely robust numerical methods. In order to handle the heterogeneous coupling between blood flow and plasma filtration, addressed by means of Navier-Stokes and Darcy's equations, we need to develop a numerical scheme capable to deal with extremely variable parameters, such as the blood viscosity and Darcy's permeability of the arterial walls. In this paper, we describe a finite element method for...

Second-order MUSCL schemes based on Dual Mesh Gradient Reconstruction (DMGR)

Christophe Berthon, Yves Coudière, Vivien Desveaux (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We discuss new MUSCL reconstructions to approximate the solutions of hyperbolic systems of conservations laws on 2D unstructured meshes. To address such an issue, we write two MUSCL schemes on two overlapping meshes. A gradient reconstruction procedure is next defined by involving both approximations coming from each MUSCL scheme. This process increases the number of numerical unknowns, but it allows to reconstruct very accurate gradients. Moreover a particular attention is paid on the limitation...

Currently displaying 601 – 620 of 797