On nonstationary motion of a fixed mass of a viscous compressible barotropic fluid bounded by a free boundary
The paper deals with numerical simulation of a compressible flow in time-dependent 2D domains with a special interest in medical applications to airflow in the human vocal tract. The mathematical model of this process is described by the compressible Navier-Stokes equations. For the treatment of the time-dependent domain, the arbitrary Lagrangian-Eulerian (ALE) method is used. The discontinuous Galerkin finite element method (DGFEM) is used for the space semidiscretization of the governing equations...
We consider mixtures of compressible viscous fluids consisting of two miscible species. In contrast to the theory of non-homogeneous incompressible fluids where one has only one velocity field, here we have two densities and two velocity fields assigned to each species of the fluid. We obtain global classical solutions for quasi-stationary Stokes-like system with interaction term.
In this survey we report on existence results for some free boundary problems for equations describing motions of both incompressible and compressible viscous fluids. We also present ways of controlling free boundaries in two cases: a) when the free boundary is governed by surface tension, b) when surface tension does not occur.
We derive inequalities for a local solution of a free boundary problem for a viscous compressible heat-conducting capillary fluid. The inequalities are crucial in proving the global existence of solutions belonging to certain anisotropic Sobolev-Slobodetskii space and close to an equilibrium state.
We consider a system of balance laws describing the motion of an ionized compressible fluid interacting with magnetic fields and radiation effects. The local-in-time existence of a unique smooth solution for the Cauchy problem is proven. The proof follows from the method of successive approximations.
In this paper, we present some interesting connections between a number of Riemann-solver free approaches to the numerical solution of multi-dimensional systems of conservation laws. As a main part, we present a new and elementary derivation of Fey’s Method of Transport (MoT) (respectively the second author’s ICE version of the scheme) and the state decompositions which form the basis of it. The only tools that we use are quadrature rules applied to the moment integral used in the gas kinetic derivation...
In this paper, we present some interesting connections between a number of Riemann-solver free approaches to the numerical solution of multi-dimensional systems of conservation laws. As a main part, we present a new and elementary derivation of Fey's Method of Transport (MoT) (respectively the second author's ICE version of the scheme) and the state decompositions which form the basis of it. The only tools that we use are quadrature rules applied to the moment integral used in the...
The existence of solutions to the Dirichlet problem for the compressible linearized Navier-Stokes system is proved in a class such that the velocity vector belongs to with r > 3. The proof is done in two steps. First the existence for local problems with constant coefficients is proved by applying the Fourier transform. Next by applying the regularizer technique the existence in a bounded domain is shown.
We prove existence and a representation formula for solutions to the equations describing steady flows of an isothermal, viscous, compressible gas having a positive infimum for the density , moving in an exterior domain, when the speed of the obstacle and the external forces are sufficiently small.