Displaying 161 – 180 of 357

Showing per page

Mathematical analysis of the discharge of a laminar hot gas in a colder atmosphere.

Stanislav Antontsev, Jesús Ildefonso Díaz (2007)

RACSAM

We study the boundary layer approximation of the, already classical, mathematical model which describes the discharge of a laminar hot gas in a stagnant colder atmosphere of the same gas. We start by proving the existence and uniqueness of solutions of the nondegenerate problem under assumptions implying that the temperature T and the horizontal velocity u of the gas are strictly positive: T ≥ δ > 0 and u ≥ ε > 0 (here δ and ε are given as boundary conditions in the external atmosphere)....

Model of pulverized coal combustion in a furnace

Robert Straka, Jindřich Makovička (2007)

Kybernetika

We describe behavior of the air-coal mixture using the Navier–Stokes equations for gas and particle phases, accompanied by a turbulence model. The undergoing chemical reactions are described by the Arrhenian kinetics (reaction rate proportional to exp - E R T , where T is temperature). We also consider the heat transfer via conduction and radiation. Moreover we use improved turbulence-chemistry interactions for reaction terms. The system of PDEs is discretized using the finite volume method (FVM) and an advection...

Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium∗

Gloria Faccanoni, Samuel Kokh, Grégoire Allaire (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In the present work we investigate the numerical simulation of liquid-vapor phase change in compressible flows. Each phase is modeled as a compressible fluid equipped with its own equation of state (EOS). We suppose that inter-phase equilibrium processes in the medium operate at a short time-scale compared to the other physical phenomena such as convection or thermal diffusion. This assumption provides an implicit definition of an equilibrium EOS...

Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium∗

Gloria Faccanoni, Samuel Kokh, Grégoire Allaire (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In the present work we investigate the numerical simulation of liquid-vapor phase change in compressible flows. Each phase is modeled as a compressible fluid equipped with its own equation of state (EOS). We suppose that inter-phase equilibrium processes in the medium operate at a short time-scale compared to the other physical phenomena such as convection or thermal diffusion. This assumption provides an implicit definition of an equilibrium EOS...

Multicomponent models in nuclear astrophysics

Bernard Ducomet (2008)

Banach Center Publications

We consider hydrodynamical models describing the evolution of a gaseous star in which the presence of thermonuclear reactions between several species leads to a multicomponent formulation. In the case of binary mixtures, recent 3D results are evoked. In the one-dimensional situation, we can prove global estimates and stabilization for some simplified model.

Nonlinear compressible vortex sheets in two space dimensions

Jean-François Coulombel, Paolo Secchi (2008)

Annales scientifiques de l'École Normale Supérieure

We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized...

Nonlinear elliptic problems with incomplete Dirichlet conditions and the stream function solution of subsonic rotational flows past profiles or cascades of profiles

Miloslav Feistauer (1989)

Aplikace matematiky

The paper is devoted to the solvability of a nonlinear elliptic problem in a plane multiply connected domain. On the inner components of its boundary Dirichlet conditions are known up to additive constants which have to be determined together with the sought solution so that the so-called trailing stagnation conditions are satisfied. The results have applications in the stream function solution of subsonic flows past groups of profiles or cascades of profiles.

Non-uniqueness of almost unidirectional inviscid compressible flow

Pavel Šolín, Karel Segeth (2004)

Applications of Mathematics

Our aim is to find roots of the non-unique behavior of gases which can be observed in certain axisymmetric nozzle geometries under special flow regimes. For this purpose, we use several versions of the compressible Euler equations. We show that the main reason for the non-uniqueness is hidden in the energy decomposition into its internal and kinetic parts, and their complementary behavior. It turns out that, at least for inviscid compressible flows, a bifurcation can occur only at flow regimes with...

Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint

Florent Berthelin (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study in this paper some numerical schemes for hyperbolic systems with unilateral constraint. In particular, we deal with the scalar case, the isentropic gas dynamics system and the full-gas dynamics system. We prove the convergence of the scheme to an entropy solution of the isentropic gas dynamics with unilateral constraint on the density and mass loss. We also study the non-trivial steady states of the system.

Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint

Florent Berthelin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study in this paper some numerical schemes for hyperbolic systems with unilateral constraint. In particular, we deal with the scalar case, the isentropic gas dynamics system and the full-gas dynamics system. We prove the convergence of the scheme to an entropy solution of the isentropic gas dynamics with unilateral constraint on the density and mass loss. We also study the non-trivial steady states of the system.

Currently displaying 161 – 180 of 357