On heat transfer to pulsatile flow of a two-phase fluid.
We consider mixtures of compressible viscous fluids consisting of two miscible species. In contrast to the theory of non-homogeneous incompressible fluids where one has only one velocity field, here we have two densities and two velocity fields assigned to each species of the fluid. We obtain global classical solutions for quasi-stationary Stokes-like system with interaction term.
We study a two-phase pipe flow model with relaxation terms in the momentum and energy equations, driving the model towards dynamic and thermal equilibrium. These equilibrium states are characterized by the velocities and temperatures being equal in each phase. For each of these relaxation processes, we consider the limits of zero and infinite relaxation times. By expanding on previously established results, we derive a formulation of the mixture sound velocity for the thermally relaxed model. This...
We study a two-phase pipe flow model with relaxation terms in the momentum and energy equations, driving the model towards dynamic and thermal equilibrium. These equilibrium states are characterized by the velocities and temperatures being equal in each phase. For each of these relaxation processes, we consider the limits of zero and infinite relaxation times. By expanding on previously established results, we derive a formulation of the mixture sound velocity for the thermally relaxed model. This...
We demonstrate a theorem of existence and uniqueness on a large scale of the solution of a system of differential disequations associated to a Graffi model relative to the motion of two incompressible viscous fluids.
We consider a Boltzmann equation for inelastic particles on the line and prove existence and uniqueness for the solutions.
We consider a Boltzmann equation for inelastic particles on the line and prove existence and uniqueness for the solutions.
We introduce and discuss a one-dimensional kinetic model of the Boltzmann equation with dissipative collisions and variable coefficient of restitution. Then, the behavior of the Boltzmann equation in the quasi elastic limit is investigated for a wide range of the rate function. By this limit procedure we obtain a class of nonlinear equations classified as nonlinear friction equations. The analysis of the cooling process shows that the nonlinearity on the relative velocity is of paramount importance...
Bubbles are formed in a fluid by inflating a liquid film with a gas in which the pressure is a strictly decreasing function of the specific volume, unbounded as . We show that, if grows as fast or faster than as , then there is at least one stable equilibrium configuration of any such bubble, no matter how much gas has been used to inflate it. On the other hand, if grows as slowly or slower than as , then any such bubble has no equilibrium configuration, when the amount of gas within...
This paper is concerned with the numerical approximation of the solutions of a two-fluid two-pressure model used in the modelling of two-phase flows. We present a relaxation strategy for easily dealing with both the nonlinearities associated with the pressure laws and the nonconservative terms that are inherently present in the set of convective equations and that couple the two phases. In particular, the proposed approximate Riemann solver is given by explicit formulas, preserves the natural...
In this work, we propose a general framework for the construction of pressure law for phase transition. These equations of state are particularly suitable for a use in a relaxation finite volume scheme. The approach is based on a constrained convex optimization problem on the mixture entropy. It is valid for both miscible and immiscible mixtures. We also propose a rough pressure law for modelling a super-critical fluid.