Displaying 61 – 80 of 149

Showing per page

FEMLab software applied to Active Magnetic Bearing analysis

Adam Piłat (2004)

International Journal of Applied Mathematics and Computer Science

This paper presents how the FEMLab package can be used to perform the magnetic field analysis in the Active Magnetic Bearing (AMB). The AMB is an integral part of the industrial rotational machine laboratory model. The electromagnetic field distribution and density analysis allow verifying the designed AMB and the influence of the shaft and coil current changes on the bearing parameters.

Frictional contact of an anisotropic piezoelectric plate

Isabel N. Figueiredo, Georg Stadler (2009)

ESAIM: Control, Optimisation and Calculus of Variations

The purpose of this paper is to derive and study a new asymptotic model for the equilibrium state of a thin anisotropic piezoelectric plate in frictional contact with a rigid obstacle. In the asymptotic process, the thickness of the piezoelectric plate is driven to zero and the convergence of the unknowns is studied. This leads to two-dimensional Kirchhoff-Love plate equations, in which mechanical displacement and electric potential are partly decoupled. Based on this model numerical examples are presented...

GO++ : a modular lagrangian/eulerian software for Hamilton Jacobi equations of geometric optics type

Jean-David Benamou, Philippe Hoch (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We describe both the classical lagrangian and the Eulerian methods for first order Hamilton–Jacobi equations of geometric optic type. We then explain the basic structure of the software and how new solvers/models can be added to it. A selection of numerical examples are presented.

Haar wavelets method for solving Pocklington's integral equation

M. Shamsi, Mohsen Razzaghi, J. Nazarzadeh, Masoud Shafiee (2004)

Kybernetika

A simple and effective method based on Haar wavelets is proposed for the solution of Pocklington’s integral equation. The properties of Haar wavelets are first given. These wavelets are utilized to reduce the solution of Pocklington’s integral equation to the solution of algebraic equations. In order to save memory and computation time, we apply a threshold procedure to obtain sparse algebraic equations. Through numerical examples, performance of the present method is investigated concerning the...

High order edge elements on simplicial meshes

Francesca Rapetti (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Low order edge elements are widely used for electromagnetic field problems. Higher order edge approximations are receiving increasing interest but their definition become rather complex. In this paper we propose a simple definition for Whitney edge elements of polynomial degree higher than one. We give a geometrical localization of all degrees of freedom over particular edges and provide a basis for these elements on simplicial meshes. As for Whitney edge elements of degree one, the basis is...

High order transmission conditions for thin conductive sheets in magneto-quasistatics

Kersten Schmidt, Sébastien Tordeux (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose transmission conditions of order 1, 2 and 3 approximating the shielding behaviour of thin conducting curved sheets for the magneto-quasistatic eddy current model in 2D. This model reduction applies to sheets whose thicknesses ε are at the order of the skin depth or essentially smaller. The sheet has itself not to be resolved, only its midline is represented by an interface. The computation is directly in one step with almost no additional cost. We prove the well-posedness w.r.t. to...

High order transmission conditions for thin conductive sheets in magneto-quasistatics

Kersten Schmidt, Sébastien Tordeux (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose transmission conditions of order 1, 2 and 3 approximating the shielding behaviour of thin conducting curved sheets for the magneto-quasistatic eddy current model in 2D. This model reduction applies to sheets whose thicknesses ε are at the order of the skin depth or essentially smaller. The sheet has itself not to be resolved, only its midline is represented by an interface. The computation is directly in one step with almost no additional cost. We prove the well-posedness w.r.t. to...

Homogenization of the Maxwell equations: Case I. Linear theory

Niklas Wellander (2001)

Applications of Mathematics

The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved.

Hybrid Particle Swarm and Neural Network Approach for Streamflow Forecasting

A. Sedki, D. Ouazar (2010)

Mathematical Modelling of Natural Phenomena

In this paper, an artificial neural network (ANN) based on hybrid algorithm combining particle swarm optimization (PSO) with back-propagation (BP) is proposed to forecast the daily streamflows in a catchment located in a semi-arid region in Morocco. The PSO algorithm has a rapid convergence during the initial stages of a global search, while the BP algorithm can achieve faster convergent speed around the global optimum. By combining the PSO with...

Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell's problem

Yanlai Chen, Jan S. Hesthaven, Yvon Maday, Jerónimo Rodríguez (2009)

ESAIM: Mathematical Modelling and Numerical Analysis


In a posteriori error analysis of reduced basis approximations to affinely parametrized partial differential equations, the construction of lower bounds for the coercivity and inf-sup stability constants is essential. In [Huynh et al., C. R. Acad. Sci. Paris Ser. I Math.345 (2007) 473–478], the authors presented an efficient method, compatible with an off-line/on-line strategy, where the on-line computation is reduced to minimizing a linear functional under a few linear constraints. These constraints...

Integral Equations VIA Saddle Point Problem for 2D Electromagnetic Problems

Nathalie Bartoli, Francis Collino (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A new system of integral equations for the exterior 2D time harmonic scattering problem is investigated. This system was first proposed by B. Després in [11]. Two new derivations of this system are given: one from elementary manipulations of classical equations, the other based on a minimization of a quadratic functional. Numerical issues are addressed to investigate the potential of the method.

L2-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes

Serge Piperno (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We investigate sufficient and possibly necessary conditions for the L2 stability of the upwind first order finite volume scheme for Maxwell equations, with metallic and absorbing boundary conditions. We yield a very general sufficient condition, valid for any finite volume partition in two and three space dimensions. We show this condition is necessary for a class of regular meshes in two space dimensions. However, numerical tests show it is not necessary in three space dimensions even on regular...

Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition

Dana Říhová-Škabrahová (2001)

Applications of Mathematics

The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part Γ 1 of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and the right-hand...

Local Parameterization and the Asymptotic Numerical Method

H. Mottaqui, B. Braikat, N. Damil (2010)

Mathematical Modelling of Natural Phenomena

The Asymptotic Numerical Method (ANM) is a family of algorithms, based on computation of truncated vectorial series, for path following problems [2]. In this paper, we present and discuss some techniques to define local parameterization [4, 6, 7] in the ANM. We give some numerical comparisons of pseudo arc-length parameterization and local parameterization on non-linear elastic shells problems

Currently displaying 61 – 80 of 149