Distributional asymptotic expansions of spectral functions and of the associated Green kernels.
We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First, we assume that the electric potentials are dilation-analytic with respect to the variable along the magnetic...
We consider the Pauli operator selfadjoint in , . Here , , are the Pauli matrices, is the magnetic potential, is the coupling constant, and is the electric potential which decays at infinity. We suppose that the magnetic field generated by satisfies some regularity conditions; in particular, its norm is lower-bounded by a positive constant, and, in the case , its direction is constant. We investigate the asymptotic behaviour as of the number of the eigenvalues of smaller than...
In this article, we give a necessary and sufficient condition in the perturbation regime on the existence of eigenvalues embedded between two thresholds. For an eigenvalue of the unperturbed operator embedded at a threshold, we prove that it can produce both discrete eigenvalues and resonances. The locations of the eigenvalues and resonances are given.
We give a condition of essential self-adjointness for magnetic Schrödinger operators on non-compact Riemannian manifolds with a given positive smooth measure which is fixed independently of the metric. This condition is related to the classical completeness of a related classical hamiltonian without magnetic field. The main result generalizes the result by I. Oleinik [29,30,31], a shorter and more transparent proof of which was provided by the author in [41]. The main idea, as in [41], consists...
A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jakić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.
For correlations of the form (0.2) we consider a critical case and prove power decay upper bounds in terms of the fundamental solution of a certain elliptic operator. This is achieved by improving the use of a maximum principle. We also formulate a general maximum principle and give two applications.
This paper is concerned with an extension and reinterpretation of previous results on the variational characterization of eigenvalues in gaps of the essential spectrum of self-adjoint operators. We state two general abstract results on the existence of eigenvalues in the gap and a continuation principle. Then these results are applied to Dirac operators in order to characterize simultaneously eigenvalues corresponding to electronic and positronic bound states.