The Tomita operator for the free scalar field
Nous considérons dans cet exposé la théorie de la diffusion pour des modèles de Pauli-Fierz sans masse divergents infrarouge. Nous montrons que les représentations CCR obtenues a partir des champs asymptotiques contiennent des secteurs cohérents décrivant un nombre infini de bosons asymptotiquement libres. Nous formulons quelques conjectures qui conduisent a une notion bien définie de sections efficaces inclusives et non inclusives pour les Hamiltoniens de Pauli-Fierz. Finalement nous donnons une...
We review the appearance of the braid group in statistical physics. In particular, we explain its relevance to the anyon model of fractional statistics and conformal field theory.
We describe a completely algebraic axiom system for intertwining operators of vertex algebra modules, using algebraic flat connections, thus formulating the concept of a tree algebra. Using the Riemann-Hilbert correspondence, we further prove that a vertex tensor category in the sense of Huang and Lepowsky gives rise to a tree algebra over . We also show that the chiral WZW model of a simply connected simple compact Lie group gives rise to a tree algebra over .
We review recent results about the derivation and the analysis of two Hartree-Fock-type models for the polarization of vacuum. We pay particular attention to the variational construction of a self-consistent polarized vacuum, and to the physical agreement between our non-perturbative construction and the perturbative description provided by Quantum Electrodynamics.