Local decay estimates for Schrödinger operators with long range potentials
Let be a long range metric perturbation of the Euclidean Laplacian on , . We prove local energy decay for the solutions of the wave, Klein-Gordon and Schrödinger equations associated to . The problem is decomposed in a low and high frequency analysis. For the high energy part, we assume a non trapping condition. For low (resp. high) frequencies we obtain a general result about the local energy decay for the group where has a suitable development at zero (resp. infinity).
We study the theory of scattering for the Hartree equation with long range potentials. We prove the existence of modified wave operators with no size restriction on the data and we determine the asymptotic behaviour in time of solutions in the range of the wave operators.
We develop the -approach to inverse scattering at zero energy in dimensions of [Beals, Coifman 1985], [Henkin, Novikov 1987] and [Novikov 2002]. As a result we give, in particular, uniqueness theorem, precise reconstruction procedure, stability estimate and approximate reconstruction for the problem of finding a sufficiently small potential in the Schrödinger equation from a fixed non-overdetermined (“backscattering” type) restriction of the Faddeev generalized scattering amplitude in the...
We consider the homogeneous Schrödinger equation with a long-range potential and show that its solutions satisfying some a priori bound at infinity can asymptotically be expressed as a sum of incoming and outgoing distorted spherical waves. Coefficients of these waves are related by the scattering matrix. This generalizes a similar result obtained earlier in the short-range case.