Displaying 301 – 320 of 591

Showing per page

Modelling of Cancer Growth, Evolution and Invasion: Bridging Scales and Models

A. R.A. Anderson, K. A. Rejniak, P. Gerlee, V. Quaranta (2010)

Mathematical Modelling of Natural Phenomena

Since cancer is a complex phenomenon that incorporates events occurring on different length and time scales, therefore multiscale models are needed if we hope to adequately address cancer specific questions. In this paper we present three different multiscale individual-cell-based models, each motivated by cancer-related problems emerging from each of the spatial scales: extracellular, cellular or subcellular, but also incorporating relevant information from other levels. We apply these hybrid...

Moderate deviations for a Curie–Weiss model with dynamical external field

Anselm Reichenbachs (2013)

ESAIM: Probability and Statistics

In the present paper we prove moderate deviations for a Curie–Weiss model with external magnetic field generated by a dynamical system, as introduced by Dombry and Guillotin-Plantard in [C. Dombry and N. Guillotin-Plantard, Markov Process. Related Fields 15 (2009) 1–30]. The results extend those already obtained for the Curie–Weiss model without external field by Eichelsbacher and Löwe in [P. Eichelsbacher and M. Löwe, Markov Process. Related Fields 10 (2004) 345–366]. The Curie–Weiss model with...

Molecular Simulation in the Canonical Ensemble and Beyond

Zhidong Jia, Ben Leimkuhler (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we discuss advanced thermostatting techniques for sampling molecular systems in the canonical ensemble. We first survey work on dynamical thermostatting methods, including the Nosé-Poincaré method, and generalized bath methods which introduce a more complicated extended model to obtain better ergodicity. We describe a general controlled temperature model, projective thermostatting molecular dynamics (PTMD) and demonstrate that it flexibly accommodates existing alternative thermostatting...

Multiscale Materials Modelling: Case Studies at the Atomistic and Electronic Structure Levels

Emilio Silva, Clemens Först, Ju Li, Xi Lin, Ting Zhu, Sidney Yip (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Although the intellectual merits of computational modelling across various length and time scales are generally well accepted, good illustrative examples are often lacking. One way to begin appreciating the benefits of the multiscale approach is to first gain experience in probing complex physical phenomena at one scale at a time. Here we discuss materials modelling at two characteristic scales separately, the atomistic level where interactions are specified through classical potentials and the...

Néel and Cross-Tie wall energies for planar micromagnetic configurations

François Alouges, Tristan Rivière, Sylvia Serfaty (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study a two-dimensional model for micromagnetics, which consists in an energy functional over S 2 -valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....

Néel and Cross-Tie Wall Energies for Planar Micromagnetic Configurations

François Alouges, Tristan Rivière, Sylvia Serfaty (2010)

ESAIM: Control, Optimisation and Calculus of Variations


We study a two-dimensional model for micromagnetics, which consists in an energy functional over S2-valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....

Nonlinear evolution inclusions arising from phase change models

Pierluigi Colli, Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels (2007)

Czechoslovak Mathematical Journal

The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail.

Nonlinear filtering for observations on a random vector field along a random path. Application to atmospheric turbulent velocities

Christophe Baehr (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

To filter perturbed local measurements on a random medium, a dynamic model jointly with an observation transfer equation are needed. Some media given by PDE could have a local probabilistic representation by a Lagrangian stochastic process with mean-field interactions. In this case, we define the acquisition process of locally homogeneous medium along a random path by a Lagrangian Markov process conditioned to be in a domain following the path and conditioned to the observations. The nonlinear...

Numerical analysis of coupling for a kinetic equation

Moulay Tidriri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we introduce a coupled systems of kinetic equations for the linearized Carleman model. We then study the existence theory and the asymptotic behaviour of the resulting coupled problem. In order to solve the coupled problem we propose to use the time marching algorithm. We then develop a convergence theory for the resulting algorithm. Numerical results confirming the theory are then presented.

Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models

Eric Cancès, Rachida Chakir, Yvon Maday (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we provide a priorierror estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the...

Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models

Eric Cancès, Rachida Chakir, Yvon Maday (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we provide a priori error estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the...

Numerical application of knot invariants and universality of random knotting

Tetsuo Deguchi, Kyoichi Tsurusaki (1998)

Banach Center Publications

We study universal properties of random knotting by making an extensive use of isotopy invariants of knots. We define knotting probability ( P K ( N ) ) by the probability of an N-noded random polygon being topologically equivalent to a given knot K. The question is the following: for a given model of random polygon how the knotting probability changes with respect to the number N of polygonal nodes? Through numerical simulation we see that the knotting probability can be expressed by a simple function of...

Currently displaying 301 – 320 of 591