Displaying 161 – 180 of 591

Showing per page

Dynamical sensitivity of the infinite cluster in critical percolation

Yuval Peres, Oded Schramm, Jeffrey E. Steif (2009)

Annales de l'I.H.P. Probabilités et statistiques

In dynamical percolation, the status of every bond is refreshed according to an independent Poisson clock. For graphs which do not percolate at criticality, the dynamical sensitivity of this property was analyzed extensively in the last decade. Here we focus on graphs which percolate at criticality, and investigate the dynamical sensitivity of the infinite cluster. We first give two examples of bounded degree graphs, one which percolates for all times at criticality and one which has exceptional...

Dynamique des nombres et physique des oscillateurs

Jacky Cresson (2008)

Journal de Théorie des Nombres de Bordeaux

Nous présentons un modèle mathématique permettant de reproduire le spectre expérimental des fréquences dans un composant électronique appelé boucle ouverte. Le spectre semble s’organiser suivant une contrainte de nature diophantienne sur les fréquences. Sa structure peut donc se comprendre via une étude de l’ensemble des fractions continues en fonction de leur longueur et de la taille des quotients partiels.

Entropic approximation in kinetic theory

Jacques Schneider (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Approximation theory in the context of probability density function turns out to go beyond the classical idea of orthogonal projection. Special tools have to be designed so as to respect the nonnegativity of the approximate function. We develop here and justify from the theoretical point of view an approximation procedure introduced by Levermore [Levermore, J. Stat. Phys. 83 (1996) 1021–1065] and based on an entropy minimization principle under moment constraints. We prove in particular a global...

Entropic approximation in kinetic theory

Jacques Schneider (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Approximation theory in the context of probability density function turns out to go beyond the classical idea of orthogonal projection. Special tools have to be designed so as to respect the nonnegativity of the approximate function. We develop here and justify from the theoretical point of view an approximation procedure introduced by Levermore [Levermore, J. Stat. Phys.83 (1996) 1021–1065] and based on an entropy minimization principle under moment constraints. We prove in particular...

Entropy maximisation problem for quantum relativistic particles

Miguel Escobedo, Stéphane Mischler, Manuel A. Valle (2005)

Bulletin de la Société Mathématique de France

The entropy of an ideal gas, both in the case of classical and quantum particles, is maximised when the number particle density, linear momentum and energy are fixed. The dispersion law energy to momentum is chosen as linear or quadratic, corresponding to non-relativistic or relativistic behaviour.

Currently displaying 161 – 180 of 591