Displaying 61 – 80 of 83

Showing per page

Shape transition under excess self-intersections for transient random walk

Amine Asselah (2010)

Annales de l'I.H.P. Probabilités et statistiques

We reveal a shape transition for a transient simple random walk forced to realize an excess q-norm of the local times, as the parameter q crosses the value qc(d)=d/(d−2). Also, as an application of our approach, we establish a central limit theorem for the q-norm of the local times in dimension 4 or more.

Simulating Kinetic Processes in Time and Space on a Lattice

J. P. Gill, K. M. Shaw, B. L. Rountree, C. E. Kehl, H. J. Chiel (2011)

Mathematical Modelling of Natural Phenomena

We have developed a chemical kinetics simulation that can be used as both an educational and research tool. The simulator is designed as an accessible, open-source project that can be run on a laptop with a student-friendly interface. The application can potentially be scaled to run in parallel for large simulations. The simulation has been successfully used in a classroom setting for teaching basic electrochemical properties. We have shown that...

The mean-field limit for the dynamics of large particle systems

François Golse (2003)

Journées équations aux dérivées partielles

This short course explains how the usual mean-field evolution PDEs in Statistical Physics - such as the Vlasov-Poisson, Schrödinger-Poisson or time-dependent Hartree-Fock equations - are rigorously derived from first principles, i.e. from the fundamental microscopic models that govern the evolution of large, interacting particle systems.

Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation

François Bolley, Arnaud Guillin, Florent Malrieu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a Vlasov-Fokker-Planck equation governing the evolution of the density of interacting and diffusive matter in the space of positions and velocities. We use a probabilistic interpretation to obtain convergence towards equilibrium in Wasserstein distance with an explicit exponential rate. We also prove a propagation of chaos property for an associated particle system, and give rates on the approximation of the solution by the particle system. Finally, a transportation inequality...

Un teorema de mecánica estadística relativista y los espacios de Hilbert-Lobatschewsky.

Darío Maravall Casesnoves (1985)

Trabajos de Estadística e Investigación Operativa

Se expone la geometría diferencial del espacio de las velocidades relativistas y se obtiene la función de distribución de velocidades de un gas de partículas relativistas, que modifica la función de Maxwell de Mecánica Estadística Clásica. Se introducen los espacios de Hilbert-Lobatschewsky.

Uniqueness of invariant product measures for elliptic infinite dimensional diffusions and particle spin systems

Alejandro F. Ramírez (2002)

ESAIM: Probability and Statistics

Consider an infinite dimensional diffusion process process on T 𝐙 d , where T is the circle, defined by the action of its generator L on C 2 ( T 𝐙 d ) local functions as L f ( η ) = i 𝐙 d 1 2 a i 2 f η i 2 + b i f η i . Assume that the coefficients, a i and b i are smooth, bounded, finite range with uniformly bounded second order partial derivatives, that a i is only a function of η i and that inf i , η a i ( η ) > 0 . Suppose ν is an invariant product measure. Then, if ν is the Lebesgue measure or if d = 1 , 2 , it is the unique invariant measure. Furthermore, if ν is translation invariant, then...

Currently displaying 61 – 80 of 83