Second class particles in the rarefaction fan
We give a review of results on the initial value problem for the Vlasov--Poisson system, concentrating on the main ingredients in the proof of global existence of classical solutions.
We reveal a shape transition for a transient simple random walk forced to realize an excess q-norm of the local times, as the parameter q crosses the value qc(d)=d/(d−2). Also, as an application of our approach, we establish a central limit theorem for the q-norm of the local times in dimension 4 or more.
We have developed a chemical kinetics simulation that can be used as both an educational and research tool. The simulator is designed as an accessible, open-source project that can be run on a laptop with a student-friendly interface. The application can potentially be scaled to run in parallel for large simulations. The simulation has been successfully used in a classroom setting for teaching basic electrochemical properties. We have shown that...
The existence of a one-parameter family of stationary solutions to a fragmentation equation with size diffusion is established. The proof combines a fixed point argument and compactness techniques.
This short course explains how the usual mean-field evolution PDEs in Statistical Physics - such as the Vlasov-Poisson, Schrödinger-Poisson or time-dependent Hartree-Fock equations - are rigorously derived from first principles, i.e. from the fundamental microscopic models that govern the evolution of large, interacting particle systems.
We consider a Vlasov-Fokker-Planck equation governing the evolution of the density of interacting and diffusive matter in the space of positions and velocities. We use a probabilistic interpretation to obtain convergence towards equilibrium in Wasserstein distance with an explicit exponential rate. We also prove a propagation of chaos property for an associated particle system, and give rates on the approximation of the solution by the particle system. Finally, a transportation inequality...
Se expone la geometría diferencial del espacio de las velocidades relativistas y se obtiene la función de distribución de velocidades de un gas de partículas relativistas, que modifica la función de Maxwell de Mecánica Estadística Clásica. Se introducen los espacios de Hilbert-Lobatschewsky.
Consider an infinite dimensional diffusion process process on , where is the circle, defined by the action of its generator on local functions as . Assume that the coefficients, and are smooth, bounded, finite range with uniformly bounded second order partial derivatives, that is only a function of and that . Suppose is an invariant product measure. Then, if is the Lebesgue measure or if , it is the unique invariant measure. Furthermore, if is translation invariant, then...