Quantum gravity in everyday life: general relativity as an effective field theory.
We review the main ideas of the two dimensional Sen geometry and apply these concepts i. in finding the `most natural' quasi-local energy-momentum, ii. in characterizing the zero energy-momentum and zero mass configurations and iii. in finding the quasi-local radiative modes of general relativity.
We review recent results concerning the study of rough solutions to the initial value problem for the Einstein vacuum equations expressed relative to wave coordinates. We develop new analytic methods based on Strichartz type inequalities which results in a gain of half a derivative relative to the classical result. Our methods blend paradifferential techniques with a geometric approach to the derivation of decay estimates. The latter allows us to take full advantage of the specific structure of...
Standard approach in cosmology is hydrodynamical approach, when galaxies are smoothed distributions of matter. Then we model the Universe as a fluid. But we know, that the Universe has a discrete structure on scales 150 - 370 MPc. Therefore we must use the generalized mechanical approach, when is the mass concentrated in points. Methods of computations are then different. We focus on -theories of gravity and we work in the cell of uniformity in the late Universe. We do the scalar perturbations...