Optimal scheduling of the -machine assembly-type flow shop
We address the 3-Machine Assembly-Type Flowshop Scheduling Problem (3MAF). This problem is known to be NP-complete in the strong sense. We propose an exact branch and bound method based on a recursive enumeration of potential inputs and outputs of the machines. Using this algorithm, several large size instances have been solved to optimality.
Dans cet article, nous essayons de faire le point sur les résultats concernant les aspects combinatoires et algorithmiques des ordres médians et des ordres de Slater des tournois. La plupart des résultats recensés sont tirés de différentes publications ; plusieurs sont originaux.
The partial inverse minimum cut problem is to minimally modify the capacities of a digraph such that there exists a minimum cut with respect to the new capacities that contains all arcs of a prespecified set. Orlin showed that the problem is strongly NP-hard if the amount of modification is measured by the weighted L1-norm. We prove that the problem remains hard for the unweighted case and show that the NP-hardness proof of Yang [RAIRO-Oper. Res.35 (2001) 117–126] for this problem with additional bound...