Un algorithme pour la résolution du programme linéaire général
El trabajo presenta un nuevo algoritmo para la resolución de un problema de porgramación geométrica primal transformado. El método se basa en las técnicas de tipo lagrangiano aumentado y utiliza como penalidad funciones derivadas de la exponencial para las restricciones con un único término, y de la pérdida cuadrática para las restricciones con más de un término. El problema resultante se resuelve por medio de un método lagrangiano con iteración de tipo Newton, y los parámetros de penalización se...
Se presenta un algoritmo de punto interior para la solución de problemas cuadráticos simétricos y definidos positivos, mediante su transformación en problemas equivalentes separables (esto es, la matriz de coeficientes cuadráticos es diagonal y no existen términos cruzados). El algoritmo difiere de otros ya existentes (como el implementado en el sistema LoQo) en el hecho de que soluciona las denominadas "ecuaciones normales en forma primal" (LoQo soluciona el denominado "sistema aumentado") y en...
A partir de las preferencias locales del decisor, emitido bajo la forma de ciertos niveles de satisfacción para los objetivos, construimos un algoritmo interactivo que genera puntos eficientes de equilibrio, en los que se minimiza la distancia del máximo ponderado entre la región factible y el punto ideal. Para este algoritmo hemos probado la convergencia.
En este trabajo proponemos un algoritmo de O(nmlogU) para resolver el problema de biflujo máximo simétrico en una red no dirigida. Para resolver este problema se introduce un cambio de variable que permite dividir el problema original en dos problemas de flujo máximo. De esta manera se obtiene un algoritmo sencillo y eficiente donde se utilizan las herramientas computacionales propias de la resolución del clásico problema de maximizar un único flujo.
In this paper, a discrete-event simulation model is coupled with a genetic algorithm to treat highly combinatorial scheduling problems encountered in a production campaign of a fine chemistry plant. The main constraints and features of fine chemistry have been taken into account in the development of the model, thus allowing a realistic evaluation of the objective function used in the stochastic optimization procedure. After a presentation of problem combinatorics, the coupling strategy is then...
En este trabajo presentamos un algoritmo que resuelve problemas clásicos de aproximación que pueden ser formulados como programas semi-infinitos lineales. Hemos estudiado la caracterización algebraica de los puntos extremos y demostrado algunas de sus propiedades. Hemos diseñado un procedimiento que genera direcciones factibles a partir de la solución de ciertos programas lineales finitos, que también caracteriza la solución óptima del problema. El método incorpora una etapa interna de purificación...
La técnica de Programación Geométrica resuelve problemas no lineales en los que tanto la función objetivo como las restricciones son expresiones polinomiales con coeficientes positivos. La teoría de Programación Signomial es similar para el caso en que los coeficientes sean reales arbitrarios. En este trabajo describimos un procedimiento de solución para problemas signomiales que pueden transformarse en problemas geométricos inversos. Este procedimiento incluye la formulación de un problema aumentado...
Sea G un grafo no dirigido con n vértices y m aristas. Un p-Centro de G es un conjunto de p puntos en el que se minimiza la distancia al vértice más lejano. Esta distancia mínima es el p-Radio de G. Un Centro Local es un punto c a la misma distancia (llamada rango del centro local) de un conjunto no vacío de vértices que no son todos accesibles a través de un mismo vértice adyacente a c. Todo p-radio es el rango de algún centro local, por tanto, para resolver el problema del p-centro basta encontrar...