Displaying 41 – 60 of 120

Showing per page

Piecewise-polynomial signal segmentation using convex optimization

Pavel Rajmic, Michaela Novosadová, Marie Daňková (2017)

Kybernetika

A method is presented for segmenting one-dimensional signal whose independent segments are modeled as polynomials, and which is corrupted by additive noise. The method is based on sparse modeling, the main part is formulated as a convex optimization problem and is solved by a proximal splitting algorithm. We perform experiments on simulated and real data and show that the method is capable of reliably finding breakpoints in the signal, but requires careful tuning of the regularization parameters...

Planificación multinivel con limitaciones de capacidad.

Sebastián Lozano Segura, Juan Carlos Larrañeta Astola, Luis Onieva Jiménez (1991)

Qüestiió

Este trabajo estudia el problema de la planificación de la producción en sistemas de fabricación multinivel, con un cuello de botella. El problema se ha abordado mediante una aproximación heurística, resolviendo el problema resultante empleando el método primal dual. El trabajo incluye un algoritmo para la selección sucesiva de los precios de los recursos que garanticen una mejora monótona hacia la solución óptima.

POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems

Martin Kahlbacher, Stefan Volkwein (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

An optimal control problem governed by a bilinear elliptic equation is considered. This problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional framework. In each level of this iterative method the solution of linear-quadratic subproblem is computed by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate (inexact) solution of the subproblem is determined. Based on a POD a-posteriori error estimator developed by Tröltzsch...

POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems∗

Martin Kahlbacher, Stefan Volkwein (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

An optimal control problem governed by a bilinear elliptic equation is considered. This problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional framework. In each level of this iterative method the solution of linear-quadratic subproblem is computed by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate (inexact) solution of the subproblem is determined. Based on a POD...

Polyhedral Reformulation of a Scheduling Problem And Related Theoretical Results

Jean Damay, Alain Quilliot, Eric Sanlaville (2008)

RAIRO - Operations Research


We deal here with a scheduling problem GPPCSP (Generalized Parallelism and Preemption Constrained Scheduling Problem) which is an extension of both the well-known Resource Constrained Scheduling Problem and the Scheduling Problem with Disjunctive Constraints. We first propose a reformulation of GPPCSP: according to it, solving GPPCSP means finding a vertex of the Feasible Vertex Subset of an Antichain Polyhedron. Next, we state several theoretical results related to this reformulation process and...

P-order necessary and sufficient conditions for optimality in singular calculus of variations

Agnieszka Prusińska, Alexey Tret'yakov (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

This paper is devoted to singular calculus of variations problems with constraint functional not regular at the solution point in the sense that the first derivative is not surjective. In the first part of the paper we pursue an approach based on the constructions of the p-regularity theory. For p-regular calculus of variations problem we formulate and prove necessary and sufficient conditions for optimality in singular case and illustrate our results by classical example of calculus of variations...

Portfolio optimization for pension plans under hybrid stochastic and local volatility

Sung-Jin Yang, Jeong-Hoon Kim, Min-Ku Lee (2015)

Applications of Mathematics

Based upon an observation that it is too restrictive to assume a definite correlation of the underlying asset price and its volatility, we use a hybrid model of the constant elasticity of variance and stochastic volatility to study a portfolio optimization problem for pension plans. By using asymptotic analysis, we derive a correction to the optimal strategy for the constant elasticity of variance model and subsequently the fine structure of the corrected optimal strategy is revealed. The result...

Positivity and stabilization of 2D linear systems

Tadeusz Kaczorek (2009)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The problem of finding a gain matrix of the state-feedback of 2D linear system such that the closed-loop system is positive and asymptotically stable is formulated and solved. Necessary and sufficient conditions for the solvability of the problem are established. It is shown that the problem can be reduced to suitable linear programming problem. The proposed approach can be extended to 2D linear system described by the 2D Roesser model.

Currently displaying 41 – 60 of 120