The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We discuss stochastic dynamics of finite populations of individuals playing symmetric games. We review recent results concerning the dependence of the long-run behavior of such systems on the number of players and the noise level. In the case of two-player games with two symmetric Nash equilibria, when the number of players increases, the population undergoes multiple transitions between its equilibria.
The G-function formalism has been
widely used in the context of evolutionary games for identifying
evolutionarily stable strategies (ESS). This formalism was
developed for and applied to point processes. Here, we
examine the G-function
formalism in the settings of spatial evolutionary
games and strategy dynamics, based on reaction-diffusion models. We start
by
extending the point process maximum principle to reaction-diffusion models
with homogeneous, locally stable surfaces.
We then develop...
Currently displaying 1 –
2 of
2