A mathematical analysis of the card game of betweenies through Kelly's criterion.
The aim of this paper is to show that the theory of (generalized) random systems with complete connection may serve as a mathematical framework for learning and adaption. Chapter 1 is of an introductory nature and gives a general description of the problems with which one is faced. In Chapter 2 the mathematical model and some results about it are explained. Chapter 3 deals with special learning and adaption models.
The purpose of this paper is to prove existence of an ε -equilib- rium point in a dynamic Nash game with Borel state space and long-run time average cost criteria for the players. The idea of the proof is first to convert the initial game with ergodic costs to an ``equivalent" game endowed with discounted costs for some appropriately chosen value of the discount factor, and then to approximate the discounted Nash game obtained in the first step with a countable state space game for which existence...