Asymptotic solutions of diffusion models for risk reserves.
A discrete time model of financial market is considered. In the focus of attention is the guaranteed profit of the investor which arises when the jumps of the stock price are bounded. The limit distribution of the profit as the model becomes closer to the classic model of geometrical Brownian motion is established. It is of interest that the approximating continuous time model does not assume any such profit.
In this work we consider a model of an insurance company where the insurer has to face a claims process which follows a Compound Poisson process with finite exponential moments. The insurer is allowed to invest in a bank account and in a risky asset described by Geometric Brownian motion with stochastic volatility that depends on an external factor modelled as a diffusion process. By using exponential martingale techniques we obtain upper and lower...
Paul Embrechts is Professor of Mathematics at the ETH Zurich specializing in Actuarial Mathematics and Quantitative Risk Management. Previous academic positions include the Universities of Leuven, Limburg and London (Imperial College). Dr. Embrechts has held visiting professorships at several universities, including the Scuola Normale in Pisa (Cattedra Galileiana), the London School of Economics (Centennial Professor of Finance), the University of Vienna, Paris 1 (Panthéon-Sorbonne), theNationalUniversity...
We explore reformulation of nonlinear stochastic programs with several joint chance constraints by stochastic programs with suitably chosen penalty-type objectives. We show that the two problems are asymptotically equivalent. Simpler cases with one chance constraint and particular penalty functions were studied in [6,11]. The obtained problems with penalties and with a fixed set of feasible solutions are simpler to solve and analyze then the chance constrained programs. We discuss solving both problems...
2000 Mathematics Subject Classification: 60K10, 62P05.The compound Poisson risk models are widely used in practice. In this paper the counting process in the insurance risk model is a compound Poisson process. The model is called Compound Compound Poisson Risk Model. Some basic properties and ruin probability are given. We analyze the model under the proportional reinsurance. The optimal retention level and the corresponding adjustment coefficient are obtained. The particular case of the Pólya-Aeppli...
This paper deals with the problem of risk measurement under mixed operation. For this purpose, we divide the basic risks into several groups based on the actual situation. First, we calculate the bounds for the subsum of every group of basic risks, then we obtain the bounds for the total sum of all the basic risks. For the dependency relationships between the basic risks in every group and all of the subsums, we give different copulas to describe them. The bounds for the aggregated risk under mixed...
The paper deals with noncooperative games in which players constitute a measure space. Strategy profiles that are equal almost everywhere are assumed to have the same interactive effects. Under these circumstances we explore links between core solutions and Nash equilibria. Conditions are given which guarantee that core outcomes must be Nash equilibria and vice versa. The main contribution are results on nonemptieness of the core.