Dynamics of growth and signaling along linear and surface structures in very early tumors.
One of the classical problems of morphogenesis is to explain how patterns of different animals evolved resulting in a consolidated and stable pattern generation after generation. In this paper we simulated the evolution of two hypothetical morphogens, or proteins, that diffuse across a grid modeling the zebra skin pattern in an embryonic state, composed of pigmented and nonpigmented cells. The simulation experiments were carried out applying a genetic algorithm to the Young cellular automaton: a...
The present paper introduces a tumor model with two time scales, the time t during which the tumor grows and the cycle time of individual cells. The model also includes the effects of gene mutations on the population density of the tumor cells. The model is formulated as a free boundary problem for a coupled system of elliptic, parabolic and hyperbolic equations within the tumor region, with nonlinear and nonlocal terms. Existence and uniqueness theorems are proved, and properties of the free boundary...
Neutropenia is a significant dose-limiting toxicity of cancer chemotherapy, especially in dose-intensified regimens. It is widely treated by injections of Granulocyte Colony-Stimulating Factor (G-CSF). However, optimal schedules of G-CSF administration are still not determined. In order to aid in identifying more efficacious and less neutropenic treatment protocols, we studied a detailed physiologically-based computer model of granulopoiesis, as affected by different treatment schedules of doxorubicin...
The circulatory system is one of the first to function during development. The earliest event in the system's development is vasculogenesis, whereby vascular progeniter cells form clusters called blood islands, which later fuse to form capillary networks. There exists a very good in vitro system that mimics this process. When HUVECs (Human Umbilical Vein Endothelial Cells) are cultured on Matrigel, they spontaneously form a capillary network structure. Two theoretical models have been proposed...
We consider the problemwhere is a smooth and bounded domain,
Cell-based, mathematical models help make sense of morphogenesis—i.e. cells organizing into shape and pattern—by capturing cell behavior in simple, purely descriptive models. Cell-based models then predict the tissue-level patterns the cells produce collectively. The first step in a cell-based modeling approach is to isolate sub-processes, e.g. the patterning capabilities of one or a few cell types in cell cultures. Cell-based models can then identify the mechanisms responsible for patterning in...
We consider the early carcinogenesis model originally proposed as a deterministic reaction-diffusion system. The model has been conceived to explore the spatial effects stemming from growth regulation of pre-cancerous cells by diffusing growth factor molecules. The model exhibited Turing instability producing transient spatial spikes in cell density, which might be considered a model counterpart of emerging foci of malignant cells. However, the process...
Since cancer is a complex phenomenon that incorporates events occurring on different length and time scales, therefore multiscale models are needed if we hope to adequately address cancer specific questions. In this paper we present three different multiscale individual-cell-based models, each motivated by cancer-related problems emerging from each of the spatial scales: extracellular, cellular or subcellular, but also incorporating relevant information from other levels. We apply these hybrid...
This paper extends the volume filling chemotaxis model [18, 26] by taking into account the cell population interactions. The extended chemotaxis models have nonlinear diffusion and chemotactic sensitivity depending on cell population density, which is a modification of the classical Keller-Segel model in which the diffusion and chemotactic sensitivity are constants (linear). The existence and boundedness of global solutions of these models are discussed and...
Seeds of sunflowers are often modelled by leading to a roughly uniform repartition with seeds indexed by consecutive integers at angular distance for the golden ratio. We associate to such a map a geodesic path of the modular curve and use it for local descriptions of the image of the phyllotactic map .
We study a reaction-diffusion equation with an integral term describing nonlocal consumption of resources in population dynamics. We show that a homogeneous equilibrium can lose its stability resulting in appearance of stationary spatial structures. They can be related to the emergence of biological species due to the intra-specific competition and random mutations. Various types of travelling waves are observed.
One of the most intriguing questions in life science is how living organisms develop and maintain their predominant form and shape via the cascade of the processes of differentiation starting from the single cell. Mathematical modeling of these developmental processes could be a very important tool to properly describe the complex processes of evolution and geometry of morphogenesis in time and space. Here, we summarize the most important biological knowledge on plant development, exploring the...
In this paper, we investigate the complex dynamics of a spatial plankton-fish system with Holling type III functional responses. We have carried out the analytical study for both one and two dimensional system in details and found out a condition for diffusive instability of a locally stable equilibrium. Furthermore, we present a theoretical analysis of processes of pattern formation that involves organism distribution and their interaction of spatially...