Multiscale estimation of cell kinetics.
The maintenance of a stable stem cell population in the epidermis is important for robust regeneration of the stratified epithelium. The population size is usually regulated by cell secreted extracellular signalling molecules as well as intracellular molecules. In this paper, a simple model incorporating both levels of regulation is developed to examine the balance between growth and differentiation for the stem cell population. In particular, the dynamics of a known differentiation regulator c-Myc,...
Motivated by a mathematical model of an age structured proliferating cell population, we state some new variants of Leray-Schauder type fixed point theorems for (ws)-compact operators. Further, we apply our results to establish some new existence and locality principles for nonlinear boundary value problem arising in the theory of growing cell population in L 1-setting. Besides, a topological structure of the set of solutions is provided.
We propose and analyze a nonlinear mathematical model of hematopoiesis, describing the dynamics of stem cell population subject to impulsive perturbations. This is a system of two age-structured partial differential equations with impulses. By integrating these equations over the age, we obtain a system of two nonlinear impulsive differential equations with several discrete delays. This system describes the evolution of the total hematopoietic stem cell populations with impulses. We first examine...
In this paper we examine some features of the global dynamics of the four-dimensional system created by Lou, Ruggeri and Ma in 2007 which describes the behavior of the AIDS-related cancer dynamic model in vivo. We give upper and lower ultimate bounds for concentrations of cell populations and the free HIV-1 involved in this model. We show for this dynamics that there is a positively invariant polytope and we find a few surfaces containing omega-limit sets for positive half trajectories in the positive...
In this paper, we propose a computational model to investigate the coupling between cell’s adhesions and actin fibres and how this coupling affects cell shape and stability. To accomplish that, we take into account the successive stages of adhesion maturation from adhesion precursors to focal complexes and ultimately to focal adhesions, as well as the actin fibres evolution from growing filaments, to bundles and finally contractile stress fibres.We use substrates with discrete patterns of adhesive...
We propose a new approach to the mathematical modelling of microbial growth. Our approach differs from familiar Monod type models by considering two phases in the physiological states of the microorganisms and makes use of basic relations from enzyme kinetics. Such an approach may be useful in the modelling and control of biotechnological processes, where microorganisms are used for various biodegradation purposes and are often put under extreme inhibitory conditions. Some computational experiments are...
FRAP (Fluorescence Recovery After Photobleaching) is a measurement technique for determination of the mobility of fluorescent molecules (presumably due to the diffusion process) within the living cells. While the experimental setup and protocol are usually fixed, the method used for the model parameter estimation, i.e. the data processing step, is not well established. In order to enhance the quantitative analysis of experimental (noisy) FRAP data, we firstly formulate the inverse problem of model...
We consider a size structured cell population model where a mother cell gives birth to two daughter cells. We know that the asymptotic behavior of the density of cells is given by the solution to an eigenproblem. The eigenvector gives the asymptotic shape and the eigenvalue gives the exponential growth rate and so the Maltusian parameter. The Maltusian parameter depends on the division rule for the mother cell, i.e., symmetric (the two daughter cells have the same size) or asymmetric. We use a...
A mathematical model for a problem of blood perfusion in a living tissue through a system of parallel capillaries is studied. Oxygen is assumed to be transported in two forms: freely diffusing and bounded (to erytrocytes in blood, to myoglobin in tissue). Existence of a weak solution is proved and a homogensation procedure is carried out in the case of randomly distribuited capillaries.
Existence and stability of periodic solutions are studied for a system of delay differential equations with two delays, with periodic coefficients. It models the evolution of hematopoietic stem cells and mature neutrophil cells in chronic myelogenous leukemia under a periodic treatment that acts only on mature cells. Existence of a guiding function leads to the proof of the existence of a strictly positive periodic solution by a theorem of Krasnoselskii....
The aim of this study was to describe and analyze the regulation and spatio-temporal dynamics of melanocyte migration in vitro and its coupling to cell division and interaction with the matrix. The melanocyte lineage is particularly interesting because it is involved in both embryonic development and oncogenesis/metastasis (melanoma). Biological experiments were performed on two melanocyte cell lines established from wild-type and β-catenin-transgenic...
In this paper we explore a new model of field carcinogenesis, inspired by lung cancer precursor lesions, which includes dynamics of a spatially distributed population of pre-cancerous cells c(t, x), constantly supplied by an influx μ of mutated normal cells. Cell proliferation is controlled by growth factor molecules bound to cells, b(t, x). Free growth factor molecules g(t, x) are produced by precancerous cells and may diffuse before they become bound to other cells. The purpose of modelling is...