Displaying 21 – 40 of 62

Showing per page

Mathematical Modelling of Tumour Dormancy

K. M. Page (2009)

Mathematical Modelling of Natural Phenomena

Many tumours undergo periods in which they apparently do not grow but remain at a roughly constant size for extended periods. This is termed tumour dormancy. The mechanisms responsible for dormancy include failure to develop an internal blood supply, individual tumour cells exiting the cell cycle and a balance between the tumour and the immune response to it. Tumour dormancy is of considerable importance in the natural history of cancer. In many cancers, and in particular in breast cancer, recurrence...

Mathematical models of tumor growth systems

Takashi Suzuki (2012)

Mathematica Bohemica

We study a class of parabolic-ODE systems modeling tumor growth, its mathematical modeling and the global in time existence of the solution obtained by the method of Lyapunov functions.

Medical image – based computational model of pulsatile flow in saccular aneurisms

Stéphanie Salmon, Marc Thiriet, Jean-Frédéric Gerbeau (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Saccular aneurisms, swelling of a blood vessel, are investigated in order (i) to estimate the development risk of the wall lesion, before and after intravascular treatment, assuming that the pressure is the major factor, and (ii) to better plan medical interventions. Numerical simulations, using the finite element method, are performed in three-dimensional aneurisms. Computational meshes are derived from medical imaging data to take into account both between-subject and within-subject anatomical...

Medical image – based computational model of pulsatile flow in saccular aneurisms

Stéphanie Salmon, Marc Thiriet, Jean-Frédéric Gerbeau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Saccular aneurisms, swelling of a blood vessel, are investigated in order (i) to estimate the development risk of the wall lesion, before and after intravascular treatment, assuming that the pressure is the major factor, and (ii) to better plan medical interventions. Numerical simulations, using the finite element method, are performed in three-dimensional aneurisms. Computational meshes are derived from medical imaging data to take into account both between-subject and within-subject anatomical...

Modeling and simulation of a blood pump for the development of a left ventricular assist system controller

Yih-Choung Yu, J. Robert Boston, Marwan A. Simaan, Phil J. Miller, James F. Antaki (1999)

Kybernetika

A mathematical model describing the pressure-volume relationship of the Novacor left ventricular assist system (LVAS) was developed. The model consisted of lumped resistance, capacitance, and inductance elements with one time-varying capacitor to simulate the cyclical pressure generation of the system. The ejection and filling portions of the pump cycle were modeled with two separate functions. The corresponding model parameters were estimated by least squares fit to experimental data obtained in...

Modeling of the oxygen transfer in the respiratory process

Sébastien Martin, Bertrand Maury (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we propose an integrated model for oxygen transfer into the blood, coupled with a lumped mechanical model for the ventilation process. Objectives. We aim at investigating oxygen transfer into the blood at rest or exercise. The first task consists in describing nonlinear effects of the oxygen transfer under normal conditions. We also include the possible diffusion limitation in oxygen transfer observed in extreme regimes involving parameters such as alveolar and venous blood oxygen...

Modeling Spatial Effects in Early Carcinogenesis : Stochastic Versus Deterministic Reaction-Diffusion Systems

R. Bertolusso, M. Kimmel (2012)

Mathematical Modelling of Natural Phenomena

We consider the early carcinogenesis model originally proposed as a deterministic reaction-diffusion system. The model has been conceived to explore the spatial effects stemming from growth regulation of pre-cancerous cells by diffusing growth factor molecules. The model exhibited Turing instability producing transient spatial spikes in cell density, which might be considered a model counterpart of emerging foci of malignant cells. However, the process...

Modeling the Cancer Stem Cell Hypothesis

C. Calmelet, A. Prokop, J. Mensah, L. J. McCawley, P. S. Crooke (2010)

Mathematical Modelling of Natural Phenomena

Solid tumors and hematological cancers contain small population of tumor cells that are believed to play a critical role in the development and progression of the disease. These cells, named Cancer Stem Cells (CSCs), have been found in leukemia, myeloma, breast, prostate, pancreas, colon, brain and lung cancers. It is also thought that CSCs drive the metastatic spread of cancer. The CSC compartment features a specific and phenotypically defined cell...

Modeling the Impact of Anticancer Agents on Metastatic Spreading

S. Benzekry, N. André, A. Benabdallah, J. Ciccolini, C. Faivre, F. Hubert, D. Barbolosi (2012)

Mathematical Modelling of Natural Phenomena

Treating cancer patients with metastatic disease remains an ultimate challenge in clinical oncology. Because invasive cancer precludes or limits the use of surgery, metastatic setting is often associated with (poor) survival, rather than sustained remission, in patients with common cancers like lung, digestive or breast carcinomas. Mathematical modeling may help us better identify non detectable metastatic status to in turn optimize treatment for...

Modelli matematici a sostegno della ricerca contro il cancro

L. Preziosi (2005)

Bollettino dell'Unione Matematica Italiana

Questo articolo, a prevalente carattere di rassegna, ha lo scopo di presentare gli ambiti matematici e gli approcci metodologici utilizzati nello sviluppo di modelli matematici a sostegno della ricerca contro il cancro. La necessità di un approccio interdisciplinare e multiscala è messo in evidenza. Infine, alcuni modelli operanti alla scala macroscopica e mesoscopica sono presentati a titolo di esempio.

Currently displaying 21 – 40 of 62