Loading [MathJax]/extensions/MathZoom.js
Complementary analysis of a model of the human immune system after a series of vaccinations, proposed in [7] and studied in [6], is presented. It is shown that all coordinates of every solution have at most two extremal values. The theoretical results are compared with experimental data.
The paper is devoted to the method of computer simulation of protein interactions taking
part in photosynthetic electron transport reactions. Using this method we have studied
kinetic characteristics of protein-protein complex formation for four pairs of proteins
involved in photosynthesis at a variety of ionic strength values. Computer simulations
describe non-monotonic dependences of complex formation rates on the ionic strength as the
result of...
The nonlocal Fisher equation has been proposed as a simple model exhibiting Turing
instability and the interpretation refers to adaptive evolution. By analogy with other formalisms
used in adaptive dynamics, it is expected that concentration phenomena (like convergence to a sum
of Dirac masses) will happen in the limit of small mutations. In the present work we study this
asymptotics by using a change of variables that leads to a constrained Hamilton-Jacobi equation.
We prove the convergence analytically...
National policies regarding the BCG vaccine for tuberculosis vary greatly throughout the international community and several countries are currently considering discontinuing universal vaccination. Detractors of BCG point to its uncertain effectiveness and its interference with the detection and treatment of latent tuberculosis infection (LTBI). In order to quantify the trade-off between vaccination and treatment of LTBI, a mathematical model was designed and calibrated to data from Brazil, Ghana,...
We develop a method for counting number of cells and extraction of approximate cell centers in 2D and 3D images of early stages of the zebra-fish embryogenesis. The approximate cell centers give us the starting points for the subjective surface based cell segmentation. We move in the inner normal direction all level sets of nuclei and membranes images by a constant speed with slight regularization of this flow by the (mean) curvature. Such multi- scale evolutionary process is represented by a geometrical...
This paper is concerned with the coupling of two models for the propagation of particles in scattering media. The first model is a linear transport equation of Boltzmann type posed in the phase space (position and velocity). It accurately describes the physics but is very expensive to solve. The second model is a diffusion equation posed in the physical space. It is only valid in areas of high scattering, weak absorption, and smooth physical coefficients, but its numerical solution is much cheaper...
This paper is concerned with the coupling of two models for the
propagation of particles in scattering media. The first model is a
linear transport equation of Boltzmann type posed in the phase space
(position and velocity). It accurately describes the physics but is
very expensive to solve. The second model is a diffusion equation
posed in the physical space. It is only valid in areas of high
scattering, weak absorption, and smooth physical coefficients, but
its numerical solution is...
We show the location of so called critical points, i.e., couples of diffusion coefficients for which a non-trivial solution of a linear reaction-diffusion system of activator-inhibitor type on an interval with Neumann boundary conditions and with additional non-linear unilateral condition at one or two points on the boundary and/or in the interior exists. Simultaneously, we show the profile of such solutions.
Currently displaying 21 –
40 of
41