O možnosti získania adaptivity v regulačnom obvode s nespojite premenlivou štruktúrou
Basic properties on linearization by output injection are investigated in this paper. A special structure is sought which is linear up to a suitable output injection and under a suitable change of coordinates. It is shown how an observer may be designed using theory available for linear time delay systems.
This paper presents two observability inequalities for the heat equation over . In the first one, the observation is from a subset of positive measure in , while in the second, the observation is from a subset of positive surface measure on . It also proves the Lebeau-Robbiano spectral inequality when is a bounded Lipschitz and locally star-shaped domain. Some applications for the above-mentioned observability inequalities are provided.
We consider smooth single-input, two-output systems on a compact manifold X. We show that the set of systems that are observable for any polynomial input whose degree is less than or equal to a given bound contains an open and dense subset of the set of smooth systems.
Observability of a general nonlinear system—given in terms of an ODE and an output map —is defined as in linear system theory (i.e. if and ). In contrast to standard treatment of the subject we present a criterion for observability which is not a generalization of a known linear test. It is obtained by evaluation of “approximate first integrals”. This concept is borrowed from nonlinear control theory where it appears under the label “Dissipation Inequality” and serves as a link with Hamilton-Jacobi...
The goal of this article is to analyze the observability properties for a space semi-discrete approximation scheme derived from a mixed finite element method of the 1d wave equation on nonuniform meshes. More precisely, we prove that observability properties hold uniformly with respect to the mesh-size under some assumptions, which, roughly, measures the lack of uniformity of the meshes, thus extending the work [Castro and Micu, Numer. Math.102 (2006) 413–462] to nonuniform meshes. Our results...
In this paper, we address the strong practical stabilization problem for a class of uncertain time delay systems with a nominal part written in triangular form. We propose, firstly, a strong practical observer. Then, we show that strong practical stability of the closed loop system with a linear, parameter dependent, state feedback is achieved. Finally, a separation principle is established, that is, we implement the control law with estimate states given by the strong practical observer and we...
The problem of observer design for a class of nonlinear discrete-time systems with time-delay is considered. A new approach of nonlinear observer design is proposed for the class of systems. Based on differential mean value theory, the error dynamic is transformed into linear parameter variable system. By using Lyapunov stability theory and Schur complement lemma, the sufficient conditions expressed in terms of matrix inequalities are obtained to guarantee the observer error converges asymptotically...
Observer design for ODE-PDE cascades is studied where the finite-dimension ODE is a globally Lipschitz nonlinear system, while the PDE part is a pair of counter-convecting transport dynamics. One major difficulty is that the state observation only rely on the PDE state at the terminal boundary, the connection point between the ODE and the PDE blocs is not accessible to measure. Combining the backstepping infinite-dimensional transformation with the high gain observer technology, the state of the...
Design procedures are proposed for two different classes of observers for systems with unknown inputs. In the first approach, the state of the observed system is decomposed into known and unknown components. The unknown component is a projection, not necessarily orthogonal, of the whole state along the subspace in which the available state component resides. Then, a dynamical system to estimate the unknown component is constructed. Combining the output of the dynamical system, which estimates the...
This paper proposes two methods for nonlinear observer design which are based on a partial nonlinear observer canonical form (POCF). Observability and integrability existence conditions for the new POCF are weaker than the well-established nonlinear observer canonical form (OCF), which achieves exact error linearization. The proposed observers provide the global asymptotic stability of error dynamics assuming that a global Lipschitz and detectability-like condition holds. Examples illustrate the...