Displaying 421 – 440 of 576

Showing per page

On the null-controllability of diffusion equations

Gérald Tenenbaum, Marius Tucsnak (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This work studies the null-controllability of a class of abstract parabolic equations. The main contribution in the general case consists in giving a short proof of an abstract version of a sufficient condition for null-controllability which has been proposed by Lebeau and Robbiano. We do not assume that the control operator is admissible. Moreover, we give estimates of the control cost. In the special case of the heat equation in rectangular domains, we provide an alternative way to check...

On the structure of linear recurrent error-control codes

Michel Fliess (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.

On the structure of linear recurrent error-control codes

Michel Fliess (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.

Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels

Ousseynou Nakoulima (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a distributed system in which the state q is governed by a parabolic equation and a pair of controls v = (h,k) where h and k play two different roles: the control k is of controllability type while h expresses that the state q does not move too far from a given state. Therefore, it is natural to introduce the control point of view. In fact, there are several ways to state and solve optimal control problems with a pair of controls h and k, in particular the Least Squares method...

Pairs of k -step reachability and m -step observability matrices

Augusto Ferrante, Harald K. Wimmer (2013)

Special Matrices

Let V and W be matrices of size n × pk and qm × n, respectively. A necessary and sufficient condition is given for the existence of a triple (A,B,C) such that V a k-step reachability matrix of (A,B) andW an m-step observability matrix of (A,C).

Currently displaying 421 – 440 of 576