Controllability for systems with slowly varying parameters
For systems with slowly varying parameters the controllability behavior is studied and the relation to the control sets for the systems with frozen parameters is clarified.
For systems with slowly varying parameters the controllability behavior is studied and the relation to the control sets for the systems with frozen parameters is clarified.
For systems with slowly varying parameters the controllability behavior is studied and the relation to the control sets for the systems with frozen parameters is clarified.
We are interested here in the reachability and controllability problems for DEDS in the max-algebra. Contrary to the situation in linear systems theory, where controllability (resp observability) refers to a (linear) subspace, these properties are essentially discrete in the -linear dynamic system. We show that these problems, which consist in solving a -linear equation lead to an eigenvector problem in the -algebra. More precisely, we show that, given a -linear system, then, for every natural...
We consider linear 2-D systems of Fornasini-Marchesini type in the continuous-time case with non-constant coefficients. Using an explicit representation of the solutions by utilizing the Riemann-kernel of the equation under consideration, we obtain controllability and observability criteria in the case of the inhomogeneous equation, where control is obtained by choosing the inhomogeneity appropriately, but also for the homogeneous equation, where control is obtained by steering with Goursat data....
We study controllability for a nonhomogeneous string and ring under an axial stretching tension that varies with time. We consider the boundary control for a string and distributed control for a ring. For a string, we are looking for a control f(t) ∈ L2(0, T) that drives the state solution to rest. We show that for a ring, two forces are required to achieve controllability. The controllability problem is reduced to a moment problem...
We consider a linear parabolic transmission problem across an interface of codimension one in a bounded domain or on a Riemannian manifold, where the transmission conditions involve an additional parabolic operator on the interface. This system is an idealization of a three-layer model in which the central layer has a small thickness . We prove a Carleman estimate in the neighborhood of the interface for an associated elliptic operator by means of partial estimates in several microlocal regions....
We consider a linear parabolic transmission problem across an interface of codimension one in a bounded domain or on a Riemannian manifold, where the transmission conditions involve an additional parabolic operator on the interface. This system is an idealization of a three-layer model in which the central layer has a small thickness . We prove a Carleman estimate in the neighborhood of the interface for an associated elliptic operator by means of partial estimates in several microlocal regions....
We consider a quantum particle in a 1D infinite square potential well with variable length. It is a nonlinear control system in which the state is the wave function of the particle and the control is the length of the potential well. We prove the following controllability result : given close enough to an eigenstate corresponding to the length and close enough to another eigenstate corresponding to the length , there exists a continuous function with , such that and , and which...
This article aims at studying the controllability of a simplified fluid structure interaction model derived and developed in [C. Conca, J. Planchard and M. Vanninathan, RAM: Res. Appl. Math. John Wiley & Sons Ltd., Chichester (1995); J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180–203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547–552]. This interaction is modeled by a wave equation surrounding a harmonic oscillator. Our main result states that, in the radially...
Consider a Timoshenko beam that is clamped to an axis perpendicular to the axis of the beam. We study the problem to move the beam from a given initial state to a position of rest, where the movement is controlled by the angular acceleration of the axis to which the beam is clamped. We show that this problem of controllability is solvable if the time of rotation is long enough and a certain parameter that describes the material of the beam is a rational number that has an even numerator and an odd...
Consider a Timoshenko beam that is clamped to an axis perpendicular to the axis of the beam. We study the problem to move the beam from a given initial state to a position of rest, where the movement is controlled by the angular acceleration of the axis to which the beam is clamped. We show that this problem of controllability is solvable if the time of rotation is long enough and a certain parameter that describes the material of the beam is a rational number that has an even numerator and an...
We consider the controllability and observation problem for a simple model describing the interaction between a fluid and a beam. For this model, microlocal propagation of singularities proves that the space of controlled functions is smaller that the energy space. We use spectral properties and an explicit construction of biorthogonal sequences to show that analytic functions can be controlled within finite time. We also give an estimate for this time, related to the amount of analyticity of the...