Minimal realizations of the inverse of a polynomial matrix using finite and infinite Jordan pairs
Let ξ be a polynomial vector field on with coefficients of degree d and P be a polynomial of degree p. We are interested in bounding the multiplicity of a zero of a restriction of P to a non-singular trajectory of ξ, when P does not vanish identically on this trajectory. Bounds doubly exponential in terms of n are already known ([9,5,10]). In this paper, we prove that, when n=3, there is a bound of the form . In Control Theory, such a bound can be used to give an estimate of the degree of nonholonomy...
A new form of the coprime polynomial fraction of a transfer function matrix is presented where the polynomial matrices and have the form of a matrix (or generalized matrix) polynomials with the structure defined directly by the controllability characteristics of a state- space model and Markov matrices , , ...
The problem of diagnostic filter design is studied. Algebraic and geometric approaches to solving this problem are investigated. Some relations between these approaches are established. New definitions of fault detectability and isolability are formulated. On the basis of these definitions, a procedure for diagnostic filter design is given in both algebraic and geometric terms.
Numerical operations on and among rational matrices are traditionally handled by direct manipulation with their scalar entries. A new numerically attractive alternative is proposed here that is based on rational matrix interpolation. The procedure begins with evaluation of rational matrices in several complex points. Then all the required operations are performed consecutively on constant matrices corresponding to each particular point. Finally, the resulting rational matrix is recovered from the...
We study the tracking control of linear delay systems. It is based on an algebraic property named -freeness, which extends Kalman’s finite dimensional linear controllability and bears some similarity with finite dimensional nonlinear flat systems. Several examples illustrate the practical relevance of the notion.
System similarity and system strict equivalence concepts from Rosenbrock's theory on linear systems are used to establish algebraic conditions of model matching as well as an algebraic method for design of centralized compensators. The ideas seem to be extensible without difficulty to a class of decentralized control.
We review the realization theory of polynomial (transfer function) matrices via "pure" generalized state space system models. The concept of an irreducible-at-infinity generalized state space realization of a polynomial matrix is defined and the mechanism of the "cancellations" of "decoupling zeros at infinity" is closely examined. The difference between the concepts of irreducibility and minimality of generalized state space realizations of polynomial (transfer function) matrices is pointed out...
This paper deals with output feedback synthesis for Timed Event Graphs (TEG) in dioid algebra. The feedback synthesis is done in order to (1) stabilize a TEG without decreasing its original production rate, (2) optimize the initial marking of the feedback, (3) delay as much as possible the tokens input.