Elastic Problems and Optimal Control: Integrable Systems
The aim of this paper is to prove that a control affine system on a manifold is equivalent by diffeomorphism to a linear system on a Lie group or a homogeneous space if and only if the vector fields of the system are complete and generate a finite dimensional Lie algebra. A vector field on a connected Lie group is linear if its flow is a one parameter group of automorphisms. An affine vector field is obtained by adding a left invariant one. Its projection on a homogeneous space, whenever it exists,...
In recent years there has been growing interest in the descriptive analysis of complex systems, permeating many aspects of daily life, obtaining considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Concretely, for complex systems it is of interest to study the exact controllability; this measure is defined as the minimum set of controls that are needed...
In this paper, we revisit the structural concept of properness. We distinguish between the properness of the whole system, here called internal properness, and the properness of the “observable part” of the system. We give geometric characterizations for this last properness concept, namely external properness.