Page 1

Displaying 1 – 3 of 3

Showing per page

Maxwell strata in sub-Riemannian problem on the group of motions of a plane

Igor Moiseev, Yuri L. Sachkov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The left-invariant sub-Riemannian problem on the group of motions of a plane is considered. Sub-Riemannian geodesics are parameterized by Jacobi's functions. Discrete symmetries of the problem generated by reflections of pendulum are described. The corresponding Maxwell points are characterized, on this basis an upper bound on the cut time is obtained.

Minimal positive realizations: a survey of recent results and open problems

Luca Benvenuti, Lorenzo Farina (2003)

Kybernetika

In this survey paper some recent results on the minimality problem for positive realizations are discussed. In particular, it is firstly shown, by means of some examples, that the minimal dimension of a positive realization of a given transfer function, may be much “larger” than its McMillan degree. Then, necessary and sufficient conditions for the minimality of a given positive realization in terms of positive factorization of the Hankel matrix are given. Finally, necessary and sufficient conditions...

Currently displaying 1 – 3 of 3

Page 1