Observer-based deadbeat controllers: A polynomial design
The problem of linear feedback design for bilinear control systems guaranteeing their conditional closed-loop stability is considered. It is shown that this problem can be reduced to investigating the conditional stability of solutions of quadratic systems of differential equations depending on parameters of the control law. Sufficient conditions for stability in the cone of a homogeneous quadratic system are obtained. For second-order systems, invariant conditions of conditional asymptotic stability...
The paper presents a novel description of the interplay between the windup phenomenon and directional change in controls for multivariable systems (including plants with an uneven number of inputs and outputs), usually omitted in the literature. The paper also proposes a new classification of anti-windup compensators with respect to the method of generating the constrained control signal.
This paper deals with the design of a robust state feedback control law for a class of uncertain linear time varying systems. Uncertainties are assumed to be time varying, in one-block norm bounded form. The proposed state feedback control law guarantees finite time stability and satisfies a given bound for an integral quadratic cost function. The contribution of this paper is to provide a sufficient condition in terms of differential linear matrix inequalities for the existence and the construction...
System similarity and system strict equivalence concepts from Rosenbrock's theory on linear systems are used to establish algebraic conditions of model matching as well as an algebraic method for design of centralized compensators. The ideas seem to be extensible without difficulty to a class of decentralized control.